版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省石家庄市行唐启明中学2023年高一数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.以下命题(其中,表示直线,表示平面):①若,,则;②若,,则;③若,,则;④若,,则其中正确命题的个数是A.0个 B.1个C.2个 D.3个2.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分且不必要条件 D.既不充分也不必要条件3.设命题,使得,则命题为的否定为()A., B.,使得C., D.,使得4.命题“,”的否定是()A, B.,C., D.,5.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.6.函数f(x)=2x-5零点在下列哪个区间内().A.(0,1) B.(1,2)C.(2,3) D.(3,4)7.已知角顶点与原点重合,始边与轴的正半轴重合,点在角的终边上,则()A. B.C. D.8.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.29.“”是“幂函数在上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.下列函数中,表示同一个函数的是A.与B.与C.与D.与11.如图是某班名学生身高的频率分布直方图,那么该班身高在区间内的学生人数为A. B.C. D.12.若,则()A. B.C.或1 D.或二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,,则_________.14.已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是__.(请填写:相切、相交、相离)15.对数函数(且)的图象经过点,则此函数的解析式________16.一条光线从A处射到点B(0,1)后被轴反射,则反射光线所在直线的一般式方程为_____________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,且点在函数图象上.(1)求函数的解析式,并在图中的直角坐标系中画出函数的图象;(2)若方程有两个不相等的实数根,求实数的取值范围.18.已知函数(0<ω<6)的图象的一个对称中心为(1)求f(x)的最小正周期;(2)求函数f(x)的单调递增区间;(3)求f(x)在区间上的最大值和最小值19.定义:若函数的定义域为D,且存在非零常数,对任意,恒成立,则称为线周期函数,为的线周期.(1)下列函数(其中表示不超过x的最大整数),是线周期函数的是____________(直接填写序号);(2)若为线周期函数,其线周期为,求证:为周期函数;(3)若为线周期函数,求的值.20.已知关于x的不等式的解集为R,记实数a的所有取值构成的集合为M.(1)求M;(2)若,对,有,求t的最小值.21.如图,天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景摩天轮,是天津的地标之一.永乐桥分上下两层,上层桥面预留了一个长方形开口,供摩天轮轮盘穿过,摩天轮的直径为110米,外挂装48个透明座舱,在电力的驱动下逆时针匀速旋转,转一圈大约需要30分钟.现将某一个透明座舱视为摩天轮上的一个点,当点到达最高点时,距离下层桥面的高度为113米,点在最低点处开始计时.(1)试确定在时刻(单位:分钟)时点距离下层桥面的高度(单位:米);(2)若转动一周内某一个摩天轮透明座舱在上下两层桥面之间的运行时间大约为5分钟,问上层桥面距离下层桥面的高度约为多少米?22.已知幂函数的图象经过点(1)求的解析式;(2)设,(i)利用定义证明函数在区间上单调递增(ii)若在上恒成立,求t的取值范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】利用线面平行和线线平行的性质和判定定理对四个命题分别分析进行选择【详解】①若a∥b,b⊂α,则a∥α或a⊂α,故错;②若a∥α,b∥α,则a,b平行、相交或异面,故②错;③若a∥b,b∥α,则a∥α或a⊂α,故③错;④若a∥α,b⊂α,则a、b平行或异面,故④错正确命题个数为0个,故选A.【点睛】本题考查空间两直线的位置关系,直线与平面的位置关系,主要考查线面平行的判定和性质.2、A【解析】解指数不等式和对数不等式,求出两个命题的等价命题,进而根据充要条件的定义,可得答案【详解】“”“”,“”“”,“”是“”的充分而不必要条件,故“”是“”的的充分而不必要条件,故选:3、C【解析】根据给定条件由含有一个量词的命题的否定方法直接写出p的否定判断作答.【详解】依题意,命题是存在量词命题,其否定是全称量词命题,所以命题的否定是:,.故选:C4、D【解析】利用全称量词命题的否定变换形式即可求解.【详解】的否定是,的否定是,故“,”的否定是“,”,故选:D5、B【解析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.6、C【解析】利用零点存在定理进行求解.【详解】因为单调递增,且;因为,所以区间内必有一个零点;故选:C.【点睛】本题主要考查零点所在区间的判断,判断的依据是零点存在定理,侧重考查数学运算的核心素养.7、D【解析】先根据三角函数的定义求出,然后采用弦化切,代入计算即可【详解】因为点在角的终边上,所以故选:D8、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值9、A【解析】由幂函数的概念,即可求出或,再根据或均满足在上单调递增以及充分条件、必要条件的概念,即可得到结果.【详解】若为幂函数,则,解得或,又或都满足在上单调递增故“”是“幂函数在上单调递增”的充分不必要条件故选:A.10、D【解析】对于A,B,C三个选项中函数定义域不同,只有D中定义域和对应法则完全相同的函数,才是同一函数,即可得到所求结论【详解】对于A,的定义域为R,的定义域为,定义域不同,故不为同一函数;对于B,的定义域为,的定义域为,定义域不同,故不为同一函数;对于C,定义域为,的定义域为R,定义域不同,故不为同一函数;对于D,与定义域和对应法则完全相同,故选D.【点睛】本题考查同一函数的判断,注意运用只有定义域和对应法则完全相同的函数,才是同一函数,考查判断和运算能力,属于基础题11、C【解析】身高在区间内的频率为人数为,选C.点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1;频率分布直方图中组中值与对应区间概率乘积的和为平均数;频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.12、A【解析】将已知式同分之后,两边平方,再根据可化简得方程,解出或1,根据,得出.【详解】由,两边平方得,或1,,.故选:A.【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对范围的判断.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】利用两角差的正切公式可计算出的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.14、相交【解析】求得的圆心到直线的距离,与圆的半径比较大小,即可得出结论.【详解】圆的圆心为、半径为,圆心到直线的距离为,小于半径,所以直线和圆相交,故答案为相交.【点睛】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用判别式来解答.15、【解析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式.【详解】由已知条件可得,可得,因为且,所以,.因此,所求函数解析式为.故答案为:.16、【解析】根据反射光线的性质,确定反射光线上的两个点的坐标,最后确定直线的一般式方程.【详解】因为一条光线从A处射到点B(0,1)后被轴反射,所以点A关于直线对称点为,根据对称性可知,反射光线所在直线过点,又因为反射光线所在直线又过点,所以反射光线所在直线斜率为,所以反射光线所在直线方程为,化成一般式得:,故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),图象见解析(2)【解析】(1)先根据点在函数的图象上求出,再分段画出函数的图象;(2)将问题转化为直线与函数的图象有两个公共点,在同一坐标系中作出图象,利用图象进行求解.【小问1详解】解:因为点在函数的图象上,所以,解得,即,其图象如图所示:【小问2详解】解:将化为,因为方程有两个不相等的实数根,所以直线与函数的图象有两个公共点,在同一坐标系中作出直线与函数的图象(如图所示),由图象,得,即,即的取值范围是.18、(1);(2)[],k∈Z;(3)最大值为10,最小值为【解析】(1)先降幂化简原式,再利用对称中心求得ω,进而得周期;(2)利用正弦函数的单调区间列出不等式即可得解;(3)利用(2)的结论,确定所给区间的单调性,再得最值【详解】解:(1)=4sin(sincos-cossin)-1=2sin2-1-2sincos=-cosωx-sinωx=-2sin(ωx),∵是对称中心,∴-,得ω=2-12k,k∈Z,∵0<ω<6,∴k=0,ω=2,∴,其最小正周期为π;(2)由,得,∴f(x)的单调递增区间为:[],k∈Z,(3)由(2)可知,f(x)在[]递减,在[]递增,可知当x=时得最大值为0;当x=时得最小值故f(x)在区间[]上的最大值为0,最小值为【点睛】此题考查了三角函数式的恒等变换,周期性,单调性,最值等,属于中档题19、(1);(2)证明见解析;(3).【解析】(1)根据新定义逐一判断即可;(2)根据新定义证明即可;(3)若为线周期函数,则存在非零常数,对任意,都有,可得,解得的值再检验即可.【详解】(1)对于,,所以不是线周期函数,对于,,所以不是线周期函数,对于,,所以是线周期函数;(2)若为线周期函数,其线周期为,则存在非零常数对任意,都有恒成立,因为,所以,所以为周期函数;(3)因为为线周期函数,则存在非零常数,对任意,都有,所以,令,得,令,得,所以,因为,所以,检验:当时,,存在非零常数,对任意,,所以为线周期函数,所以:.【点睛】关键点点睛:本题解题的关键点是对新定义的理解和应用,以及特殊值解决恒成立问题.20、(1)(2)1【解析】(1)分类讨论即可求得实数a的所有取值构成的集合M;(2)先求得的最大值2,再解不等式即可求得t的最小值.【小问1详解】当时,满足题意;当时,要使不等式的解集为R,必须,解得,综上可知,所以【小问2详解】∵,∴,∴,(当且仅当时取“=”)∴,∵,有,∴,∴,∴或,又,∴,∴t的最小值为1.21、(1)米.(2)米.【解析】(1)如图,建立平面直角坐标系,以为始边,为终边的角为,计算得到答案.(2)根据对称性,上层桥面距离下层桥面的高度为点在分钟时距离下层桥面的高度,计算得到答案.【详解】(1)如图,建立平面直角坐标系.由题可知在分钟内所转过的角为,因为点在最低点处开始计时,所以以为始边,为终边的角为,所以点的纵坐标为,则(),故在分钟时点距离下层桥面的高度为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲苯精馏塔课程设计结论
- 网络营销微信课程设计
- 医院设备管理制度
- 波浪能发电装置课程设计
- 舞蹈机构古典舞课程设计
- 用天正暖通进行课程设计
- 会计师工作总结细心核算确保账目准确无误
- 数字时代品牌营销的新趋势计划
- 日常教学反思与总结计划
- 装修合同简易版
- 通力电梯KCE电气系统学习指南
- 风电场岗位任职资格考试题库大全-下(填空题2-2)
- 九年级数学特长生选拔考试试题
- 幼儿园交通安全宣传课件PPT
- 门窗施工组织设计与方案
- 健身健美(课堂PPT)
- (完整版)财务管理学课后习题答案-人大版
- 锚索试验总结(共11页)
- 移动脚手架安全交底
- 人教版“课标”教材《统计与概率》教学内容、具体目标和要求
- 矩形钢板水箱的设计与计算
评论
0/150
提交评论