广东省六校2023-2024学年数学高一上期末考试模拟试题含解析_第1页
广东省六校2023-2024学年数学高一上期末考试模拟试题含解析_第2页
广东省六校2023-2024学年数学高一上期末考试模拟试题含解析_第3页
广东省六校2023-2024学年数学高一上期末考试模拟试题含解析_第4页
广东省六校2023-2024学年数学高一上期末考试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省六校2023-2024学年数学高一上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要得到函数的图像,需要将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位2.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个3.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}4.比较,,的大小()A. B.C. D.5.若函数的一个正数零点附近的函数值用二分法计算,其参考数据如下:那么方程的一个近似根(精确度)可以是()A. B.C. D.6.已知x>0,y>0,且x+2y=2,则xy()A.有最大值为1 B.有最小值为1C.有最大值为 D.有最小值为7.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行8.如图,四棱锥的底面为正方形,底面,则下列结论中不正确的是A.B.平面C.平面平面D.与所成的角等于与所成的角9.已知是减函数,则a的取值范围是()A. B.C. D.10.下列各式不正确的是()A.sin(α+)=-sinα B.cos(α+)=-sinαC.sin(-α-2)=-sinα D.cos(α-)=sinα二、填空题:本大题共6小题,每小题5分,共30分。11.函数在上是x的减函数,则实数a的取值范围是______12.直线与直线的距离是__________13.请写出一个最小正周期为,且在上单调递增的函数__________14.已知函数,则的值是________15.如果对任意实数x总成立,那么a的取值范围是____________.16.已知,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,有一块半径为4的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上,连接OC两点,OC与OB所形成的夹角为.(1)写出这个梯形周长y和的函数解析式,并写出它的定义域;(2)求周长y的最大值以及此时梯形的面积.18.已知全集,集合,,.(1)若,求;(2)若,求实数a的取值范围.19.如图,三棱柱中,侧棱垂直底面,,,点是棱的中点(1)证明:平面平面;(2)求三棱锥的体积20.已知定义域为R的函数是奇函数.(1)求a的值;(2)求不等式的解集.21.已知函数是定义在上的奇函数,且.(1)求函数解析式;(2)判断函数在上的单调性,并用定义证明;(3)解关于的不等式:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】直接按照三角函数图像的平移即可求解.【详解】,所以是左移个单位.故选:A2、A【解析】根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.【详解】①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A3、B【解析】分析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.4、D【解析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【详解】因为,,所以故选:D【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.5、C【解析】根据二分法求零点的步骤以及精确度可求得结果.【详解】因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,所以,所以函数在内有零点,因为,所以不满足精确度;因为,,所以函数在内有零点,因为,所以满足精确度,所以方程的一个近似根(精确度)是区间内的任意一个值(包括端点值),根据四个选项可知选C.故选:C【点睛】关键点点睛:掌握二分法求零点的步骤以及精确度的概念是解题关键.6、C【解析】利用基本不等式的性质进行求解即可【详解】,,且,(1),当且仅当,即,时,取等号,故的最大值是:,故选:【点睛】本题主要考查基本不等式的应用,注意基本不等式成立的条件7、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.8、D【解析】结合直线与平面垂直判定和性质,结合直线与平面平行的判定,即可【详解】A选项,可知可知,故,正确;B选项,AB平行CD,故正确;C选项,,故平面平面,正确;D选项,AB与SC所成的角为,而DC与SA所成的角为,故错误,故选D【点睛】考查了直线与平面垂直的判定和性质,考查了直线与平面平行的判定,考查了异面直线所成角,难度中等9、D【解析】利用分段函数在上单调递减的特征直接列出不等式组求解即得.【详解】因函数是定义在上的减函数,则有,解得,所以的取值范围是.故选:D10、B【解析】将视为锐角,根据“奇变偶不变,符号看象限”得出答案.【详解】将视为锐角,∵在第三象限,正弦为负值,且是的2倍为偶数,不改变三角函数的名称,∴,A正确;∵在第四象限,余弦为正值,且是的3倍为奇数数,要改变三角函数的名称,∴,B错误;∵,在第四象限,正弦为负值,且0是的0倍为偶数,不改变三角函数的名称,∴,C正确;∵在第四象限,余弦为正值,且是的1倍为奇数,要改变三角函数的名称,∴,D正确.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.12、【解析】13、或(不唯一).【解析】根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可.【详解】解:根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可,如或满足题意故答案为:或(不唯一).14、-1【解析】利用分段函数的解析式,代入即可求解.【详解】解:因为,则.故答案为:-115、【解析】先利用绝对值三角不等式求出的最小值,进而求出a的取值范围.【详解】,当且仅当时等号成立,故,所以a的取值范围是.故答案为:16、【解析】直接利用二倍角的余弦公式求得cos2a的值【详解】∵.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)20,【解析】(1)过点C作,表示出,,即可写出梯形周长y和的函数解析式;(2)令,结合二次函数求出y的最大值,求出此时的,再计算梯形面积即可.【小问1详解】由题意得.半圆形钢板半径为4,则,过点C作.在和中,有,,.在中,因为,为等腰三角形,故,所以,.,.【小问2详解】由.令,则,则.则当时,周长y有最大值,最大值20,此时,.故梯形的高,,.18、(1)(2)【解析】(1)时,分别求出集合,,,再根据集合的运算求得答案;(2)根据,列出相应的不等式组,解得答案.【小问1详解】当时,,,所以,故.【小问2详解】因为,所以,解得.19、(1)证明见解析;(2)【解析】(1)由题意得,,即可得到平面,从而得到⊥,再根据,得到,证得平面,即可得证;(2)首先求出,利用勾股定理求出,即可求出,再根据锥体的体积公式计算可得【详解】解:(1)证明:由题设知,,,平面,所以平面,又因为平面,所以因为,所以,即因为,平面,所以平面,又因为平面,所以平面平面(2)由,得,所以,所以,所以的面积,所以20、(1);(2).【解析】(1)利用奇函数的必要条件,,求出,进而再验证此时为奇函数;(2),要用函数的单调性,将复合不等式转化,所以考虑分离常数,化简为,判断在是增函数,可得不等式,转化为求指数幂不等式,即可求解.【详解】(1)函数是奇函数,,,;(2),令,解得,化,在上增函数,且,所以在是增函数,等价于,,所以不等式的解集为.【点睛】本题考查函数的奇偶性求参数,要注意应用奇偶性的必要条件减少计算量,但要进行验证;考查函数的单调性应用及解不等式,考查计算、推理能力,属于中档题.21、(1);(2)函数在上是增函数,证明见解析;(3).【解析】(1)根据奇函数的定义可求得的值,再结合已知条件可求得实数的值,由此可得出函数的解析式;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论