版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西北海市2023年数学高一上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.如图,向量,,的起点与终点均在正方形网格的格点上,则向量用基底,表示为A. B.C. D.2.下列函数在其定义域上既是奇函数又是减函数的是A. B.C. D.3.已知菱形的边长为2,,点分别在边上,,.若,则等于()A. B.C. D.4.公元263年左右,我国数学有刘徽发现当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.某同学利用刘徽的“割圆术”思想设计了一个计算圆周率的近似值的程序框图如图,则输出S的值为(参考数据:)A.2.598 B.3.106C.3.132 D.3.1425.把正方形沿对角线折起,当以,,,四点为顶点的三棱锥体积最大时,直线和平面所成角的大小为()A. B.C. D.6.设a,bR,,则()A. B.C. D.7.设全集,,,则如图阴影部分表示的集合为()A. B.C. D.8.已知函数,,的零点分别为则的大小顺序为()A. B.C. D.9.函数的零点的个数为A. B.C. D.10.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.直三棱柱ABC-A1B1C1,内接于球O,且AB⊥BC,AB=3.BC=4.AA1=4,则球O的表面积______12.设向量不平行,向量与平行,则实数_________.13.已知水平放置的按“斜二测画法”得到如图所示的直观图,其中,,则原的面积为___________14.已知命题“∀x∈R,e x≥a”15.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,.(1)当时,解关于的方程;(2)当时,函数在有零点,求实数的取值范围.17.如图,在直三棱柱ABC-A1B1C1中,三角形ABC为等腰直角三角形,AC=BC=2(1)求证:AC1//(2)二面角B118.已知直线l经过点,其倾斜角为.(1)求直线l的方程;(2)求直线l与两坐标轴围成的三角形的面积.19.已知一次函数的图像与轴、轴分别相交于点,(分别是与轴、轴正半轴同方向的单位向量),函数.(Ⅰ)求的值;(Ⅱ)当满足时,求函数的最小值.20.已知(1)化简;(2)若是第三象限角,且,求的值21.已知函数.(1),,求的单调递减区间;(2)若,,的最大值是,求的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】由题设有,所以,选C.2、A【解析】选项是非奇非偶函数,选项是奇函数但在定义域的每个区间上是减函数,不能说是定义域上的减函数,故符合题意.3、C【解析】,,即①,同理可得②,①+②得,故选C考点:1.平面向量共线充要条件;2.向量的数量积运算4、C【解析】阅读流程图可得,输出值为:.本题选择C选项.点睛:识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构(2)要识别、运行程序框图,理解框图所解决的实际问题(3)按照题目要求完成解答并验证5、C【解析】当平面平面时,三棱锥体积最大,由此能求出结果【详解】解:如图,当平面平面时,三棱锥体积最大取的中点,则平面,故直线和平面所成的角为,故选:【点睛】本题考查直线与平面所成角的求法,解题时要注意空间思维能力的培养,属于中档题6、D【解析】利用不等式的基本性质及作差法,对结论逐一分析,选出正确结论即可.【详解】因为,则,所以,即,故A错误;因为,所以,则,所以,即,∴,,即,故B错误;∵由,因,所以,又因为,所以,即,故C错误;由可得,,故D正确.故选:D.7、D【解析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【详解】,.图中阴影部分所表示的集合为且.故选:D.【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.8、C【解析】利用数形结合,画出函数的图象,判断函数的零点的大小即可【详解】函数,,的零点转化为,,与的图象的交点的横坐标,因为零点分别为在坐标系中画出,,与的图象如图:可知,,,满足故选:9、B【解析】略【详解】因为函数单调递增,且x=3,y>0,x=1,y<0,所以零点个数为110、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用三线垂直联想长方体,而长方体外接球直径为其体对角线长,容易得到球半径,得解【详解】直三棱柱中,易知AB,BC,BB1两两垂直,可知其为长方体的一部分,利用长方体外接球直径为其体对角线长,可知其直径为,∴=41π,故答案为41π【点睛】本题主要考查了三棱柱的外接球和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和空间想象能力.12、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:13、2【解析】∵∠B'A'C'=90°,B'O'=C'O'=1,.∴A'O'=1,∴原△ABC的高为2,△ABC面积为.点睛:由斜二测画法知,设直观图的面积为,原图形面积为,则14、a≤0【解析】根据∀x∈R,e x≥a成立,【详解】因为∀x∈R,e所以e 则a≤0,故答案为:a≤015、①.②.【解析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【点睛】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)【解析】(1)方程变成,令,化简解关于的一元二次方程,从而求出的值.(2)将零点转化为方程有实根,即时有解,令,,得:,从而得出取值范围.【详解】(1),令,则,解得,所以(2),时,设,,,对称轴为,时,,.17、(1)见解析(2)45°【解析】1设BC1∩B1C=E,连接ED,则2推导出CD⊥AB,BB1⊥CD,从而CD⊥平面ABB1A1,进而CD⊥B1解析:(1)在直三棱柱ABC-A1B则E为BC1的中点,连接∵D为AB的中点,∴ED//AC,又∵ED⊂平面CDB1,AC∴AC1//(2)∵ΔABC中,AC=BC,D为AB中点,∴CD⊥AB,又∵BB1⊥平面ABC,CD⊂∴BB1⊥CD,又AB∩BB1∵B1D⊂平面ABB1A1,AB⊂平面∴∠B1DB∵ΔABC中,AB=2,∴BD=1,RtΔB1BD中,∴二面角B1-CD-B18、(1);(2).【解析】(1)由斜率,再利用点斜式即可求得直线方程;(2)由直线的方程,分别令为,得到纵截距与横截距,即可得到直线与两坐标轴所围成的三角形的面积.【详解】(1)直线方程为:,即.(2)由(1)令,则;令,则.所以直线与两坐标轴所围成的三角形的面积为:.【点睛】本题考查直线的点斜式方程,直线截距的意义,三角形的面积,属于基础题.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由已知可得,则,又因,所以.所以.(Ⅱ)由(Ⅰ)知,由,得,即,解得.由条件得,故函数图象的对称轴为,①当,即时,在上单调递增,所以②当,即时,在处取得最小值,所以.③当,即时,在上单调递减,所以.综上函数的最小值为点睛:二次函数在给定区间上最值的类型及解法:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解20、(1);(2).【解析】(1)利用诱导公式化简==;(2)由诱导公式可得,再利用同角三角函数关系求出即可试题解析:(1)(2)∵,∴,又第三象限角,∴,∴点睛:(1)三角函数式化简的思路:①切化弦,统一名;②用诱导公式,统一角;③用因式分解将式子变形,化为最简(2)解题时要熟练运用诱导公式和同角三角函数基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021届湖北省孝感市普通高中高一下学期期末考试数学试题
- 2025年建筑施工《春节节后复工复产》工作实施方案 合计3份
- 小学一年级20以内数学口算练习题大全
- 学校聘用教师劳动合同书5篇
- 《肌组织课件》课件
- 你听“你听多美”命题作文写作指导与精彩例文
- 湖南高考语文试题分析报告
- 《劳动定额知识》课件
- 商超连锁店话务员工作总结
- 税务筹划与规划实践经验分享
- 《2024年 基于Python的电影弹幕数据分析》范文
- 三支一扶协议书模板
- 烫伤的防治与护理
- 施工现场临时用电安全监理检查表
- 2024年全国职业院校技能大赛高职组(护理技能赛项)备赛试题库(含答案)
- 2024小英新人教版PEP三年级上册全册单元测试测评卷
- 供应链管理规章制度
- 2023非预应力钢筒混凝土管
- 2024年3月八省八校T8第二次联考语文试题及答案
- 程序设计基础-C智慧树知到期末考试答案章节答案2024年四川师范大学
- 驾驶员三年内工作总结
评论
0/150
提交评论