版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省百校2023年数学高一上期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数则=()A. B.9C. D.2.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④3.已知向量,且,则实数=A B.0C.3 D.4.把正方形沿对角线折起,当以,,,四点为顶点的三棱锥体积最大时,直线和平面所成角的大小为()A. B.C. D.5.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要6.已知函数的部分图像如图所示,则正数A值为()A. B.C. D.7.若方程有两个不相等的实数根,则实根的取值范围是()A. B.C. D.8.已知则()A. B.C. D.9.已知集合,则()A. B.C. D.10.函数f(x)=lnx+3x-7的零点所在的区间是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知正实数x,y满足,则的最小值为______12.函数的图像恒过定点的坐标为_________.13.设函数f(x)=-x+2,则满足f(x-1)+f(2x)>0的x的取值范围是______.14.已知函数是定义在R上的奇函数,且,若对任意的,当时,都有成立,则不等式的解集为_____15.已知集合,若,求实数的值.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数在区间上有最大值5和最小值2,求、的值17.如图所示,矩形所在平面,分别是的中点.(1)求证:平面.(2)18.已知函数是上的偶函数,且当时,.(1)求的值;(2)求函数的表达式,并直接写出其单调区间(不需要证明);(3)若,求实数的取值范围.19.已知函数(,且).(1)求的值,并证明不是奇函数;(2)若,其中e是自然对数的底数,证明:存在不为0的零点,并求.注:设x为实数,表示不超过x的最大整数.参考数据:,,,.20.已知分别是定义在上的奇函数和偶函数,且(1)求的解析式;(2)若时,对一切,使得恒成立,求实数的取值范围.21.已知函数f(x)=lg(3+x)+lg(3-x)(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】根据函数的解析式求解即可.【详解】,所以,故选A2、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.3、C【解析】由题意得,,因为,所以,解得,故选C.考点:向量的坐标运算.4、C【解析】当平面平面时,三棱锥体积最大,由此能求出结果【详解】解:如图,当平面平面时,三棱锥体积最大取的中点,则平面,故直线和平面所成的角为,故选:【点睛】本题考查直线与平面所成角的求法,解题时要注意空间思维能力的培养,属于中档题5、B【解析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【点睛】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.6、B【解析】根据图象可得函数的周期,从而可求,再根据对称轴可求,结合图象过可求.【详解】由图象可得,故,而时,函数取最小值,故,故,而,故,因为图象过,故,故,故选:B.7、B【解析】方程有两个不相等的实数根,转化为有两个不等根,根据图像得到只需要故答案为B.8、D【解析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β)【详解】∵∴∴,∴,∴故选:D9、C【解析】根据并集的定义计算【详解】由题意故选:C10、C【解析】由函数的解析式求得f(2)f(3)<0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间【详解】∵函数f(x)=lnx+3x-7在其定义域上单调递增,∴f(2)=ln2+2×3-7=ln2-1<0,f(3)=ln3+9-7=ln3+2>0,∴f(2)f(3)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(2,3),故选C【点睛】本题主要考查求函数的值,函数零点的判定定理,属于基础题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.12、(1,2)【解析】令真数,求出的值和此时的值即可得到定点坐标【详解】令得:,此时,所以函数的图象恒过定点,故答案为:13、【解析】由函数的解析式可得,据此解不等式即可得答案【详解】解:根据题意,函数,则,若,即,解可得:,即的取值范围为;故答案为.【点睛】本题考查函数的单调性的应用,涉及不等式的解法,属于基础题.14、;【解析】令,则为偶函数,且,当时,为减函数所以当时,;当时,;因此当时,;当时,,即不等式的解集为点睛:利用函数性质解抽象函数不等式,实质是利用对应函数单调性,而对应函数需要构造.15、【解析】根据题意,可得或,然后根据结果进行验证即可.【详解】由题可知:集合,所以或,则或当时,,不符合集合元素的互异性,当时,,符合题意所以【点睛】本题考查元素与集合的关系求参数,考查计算能力,属基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、,.【解析】利用对称轴x=1,[1,3]是f(x)的递增区间及最大值5和最小值2可以找出关于a、b的表达式,求出a、b的值试题解析:依题意,的对称轴为,函数在上随着的增大而增大,故当时,该函数取得最大值,即,当时,该函数取得最小值,即,即,∴联立方程得,解得,.17、(1)见解析;(2)见解析【解析】试题分析:(1)取的中点,连接,构造平行四边形,证得线线平行,进而得到线面平行;(2)由第一问得到,又因为平面,,进而证得结论解析:(1)证明:取的中点,连接,分别是的中点,,,四边形是平行四边形,平面,平面,平面.(2)平面,,又,平面,,又,.点睛:这个题目考查了线面平行的证明,线线垂直的证明.一般证明线面平行是从线线平行入手,通过构造平行四边形,三角形中位线,梯形底边等,找到线线平行,再证线面平行.证明线线垂直也可以从线面垂直入手18、(1)(2)答案见解析(3)【解析】(1)根据偶函数的性质直接计算;(2)当时,则,根据偶函数的性质即可求出;(3)由题可得,根据单调性可得,即可解出.【小问1详解】因为是上的偶函数,所以.【小问2详解】当时,则,则,故当时,,故,故的单调递增区间为,单调递减区间为.【小问3详解】若,即,即因为在单调递减,所以,故或,解得:或,即.19、(1),证明见解析(2)证明见解析,【解析】(1)利用,可证明;(2)利用零点的判定方法证明(5),可求得【小问1详解】证明:,,,,不是奇函数;【小问2详解】,,(5),(5),存在不为0的零点20、(1);(2)综上或【解析】(1)利用奇偶性构建方程组,解之即可;(2)恒成立等价于在恒成立(其中),令,讨论二次项系数,利用三个“二次”的关系布列不等式组即可.试题解析:(1)①,,分别是定义在上的奇函数和偶函数,②,由①②可知(2)当时,,令,即,恒成立,在恒成立.令(ⅰ)当时,(舍);(ⅱ)法一:当时,或或解得.法二:由于,所以或解得.(ⅲ)当时,,解得综上或点睛:研究不等式恒成立或存在型问题,首先要构造函数,然后研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汽车制造与零部件采购合同
- 儿童玩具行业科技创新驱动与产业发展方向考核试卷
- 2024年版权授权与购销合同
- 固体饮料的市场定价策略考核试卷
- 建筑机械项目管理与成本控制考核试卷
- 建筑拆除工程施工监理要点考核试卷
- 体育用品售后服务与客户满意度考核试卷
- 2024年版企业人事代理服务合同一
- 中班探究性主题课程设计
- 机器马课程设计
- 认知心理学智慧树知到期末考试答案章节答案2024年西南大学
- 生物入侵与生态安全智慧树知到期末考试答案章节答案2024年台州学院
- 低空经济产业园项目立项报告
- 医院危化品目录
- 《大数据技术原理与应用(第3版)》期末复习题库(含答案)
- 2024年汉口银行股份有限公司招聘笔试冲刺题(带答案解析)
- 集成电路高可靠高密度封装(一期)项目可行性研究报告
- 《韩国的语言》课后答案
- 宠物医疗创新创业
- 报价单(产品报价单)
- 项目经理及主要管理人员能力水平
评论
0/150
提交评论