版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥八中2023-2024学年数学高一上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,为两个不同的平面,,为两条不同的直线,则下列命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则2.()A.0 B.1C.6 D.3.在平面直角坐标系中,若角的终边经过点,则()A. B.C. D.4.已知是定义在上的奇函数,且当时,,那么A. B.C. D.5.已知M,N都是实数,则“”是“”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要6.若函数的图像关于点中心对称,则的最小值为()A. B.C. D.7.函数是奇函数,则的值为()A.1 B.C.0 D.8.已知,,,则a,b,c的大小关系为()A. B.C. D.9.若关于的不等式在恒成立,则实数的取值范围是()A. B.C. D.10.一个球的表面积是,那么这个球的体积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.12.已知函数是定义在上的奇函数,则___________.13.不等式的解集为_____________.14.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是____________.15.函数的最小值为________16.已知函数,则函数f(x)的值域为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(Ⅰ)求函数的最小正周期(Ⅱ)求函数在上的最大值与最小值18.已知函数的定义域是,设(1)求解析式及定义域;(2)若,求函数的最大值和最小值19.已知集合A={x|},B={x||x-a|<2},其中a>0且a≠1(1)当a=2时,求A∪B及A∩B;(2)若集合C={x|logax<0}且C⊆B,求a的取值范围20.如图所示,在多面体中,四边形是正方形,,为的中点.(1)求证:平面;(2)求证:平面平面.21.已知(1)若,求的值;(2)若,且,求实数的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据点线面位置关系,其中D选项是面面垂直的判定定理,在具体物体中辨析剩余三个选项.【详解】考虑在如图长方体中,平面,但不能得出平面,所以选项A错误;平面,平面,但不能得出,所以选项B错误;平面平面,平面,但不能得出平面;其中D选项是面面垂直的判定定理.故选:D【点睛】此题考查线面平行与垂直的辨析,关键在于准确掌握基本定理,并应用定理进行推导及辨析.2、B【解析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可.【详解】,故选B.【点睛】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键.3、A【解析】根据三角函数定义求解即可.【详解】角的终边经过点,即,则.故选:A.4、C【解析】由题意得,,故,故选C考点:分段函数的应用.5、B【解析】用定义法进行判断.【详解】充分性:取,满足.但是无意义,所以充分性不满足;必要性:当成立时,则有,所以.所以必要性满足.故选:B6、C【解析】根据函数的图像关于点中心对称,由求出的表达式即可.【详解】因为函数的图像关于点中心对称,所以,所以,解得,所以故选:C【点睛】本题主要考查余弦函数的对称性,还考查了运算求解的能力,属于基础题.7、D【解析】根据奇函数的定义可得,代入表达式利用对数的运算即可求解.【详解】函数是奇函数,则,即,从而可得,解得.当时,,即定义域为,所以时,是奇函数故选:D【点睛】本题考查了函数奇偶性的应用,需掌握函数奇偶性的定义,同时本题也考查了对数的运算,属于基础题.8、D【解析】与中间值1和2比较.【详解】,,,所以故选:D.【点睛】本题考查幂与对数的大小比较,在比较对数和幂的大小时,能化为同底数的化为同底数,再利用函数的单调性比较,否则可借助中间值比较,如0,1,2等等.9、A【解析】转化为当时,函数的图象不在的图象的上方,根据图象列式可解得结果.【详解】由题意知关于的不等式在恒成立,所以当时,函数的图象不在的图象的上方,由图可知,解得.故选:A【点睛】关键点点睛:利用函数的图象与函数的图象求解是解题关键.10、B【解析】先求球半径,再求球体积.【详解】因为,所以,选B.【点睛】本题考查球表面积与体积,考查基本求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.12、1【解析】依题意可得,,则,解得当时,,则所以为奇函数,满足条件,故13、【解析】将不等式转化为,利用指数函数的单调性求解.【详解】不等式为,即,解得,所以不等式的解集为,故答案为:14、##-0.4【解析】根据函数的周期性及可得的值,进而利用周期性即可求解的值.【详解】解:因为是定义在上且周期为2的函数,在区间上,所以,,又,即,解得,所以,故答案为:.15、##【解析】用辅助角公式将函数整理成的形式,即可求出最小值【详解】,,所以最小值为故答案为:16、【解析】求函数的导数利用函数的单调性求值域即可.【详解】解:函数,,由,解得,此时函数单调递增由,解得,此时函数单调递减函数的最小值为(2),(1),(5)最大值为(5),,即函数的值域为:.故答案为.【点睛】本题主要考查函数的值域的求法,利用导数研究函数的单调性是解决本题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值1,最小值0【解析】(1)先利用二倍角正余弦公式以及配角公式将函数化为基本三角函数,再根据正弦函数性质求最小正周期.(2)先根据,得正弦函数取值范围,再求函数最值试题解析:(Ⅰ)∴的最小正周期(Ⅱ)∵,∴,∴,∴,即:当且仅当时,取最小值,当且仅当,即时,取最大值,点睛:三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征18、(1)g(x)=22x-2x+2,定义域为[0,1](2)最大值为-3,最小值为-4【解析】(1)根据函数,得到f(2x)和f(x+2)的解析式求解;再根据f(x)=2x的定义域是[0,3],由求g(x)的定义域;(2)由(1)得g(x)=22x-2x+2,设2x=t,t∈[1,2],转化为二次函数求解.【小问1详解】解:因为函数,所以f(2x)=22x,f(x+2)=2x+2,所以g(x)=f(2x)-f(x+2)=22x-2x+2,∵f(x)=2x的定义域是[0,3],∴,解得0≤x≤1,∴g(x)的定义域为[0,1]【小问2详解】由(1)得g(x)=22x-2x+2,设2x=t,则t∈[1,2],∴g(t)=t2-4t=,∴g(t)在[1,2]上单调递减,∴g(t)max=g(1)=-3,g(t)min=g(2)=-4∴函数g(x)的最大值为-3,最小值为-419、(1)A∪B={x|x>0},A∩B={x|2<x<4};(2){a|1<a≤2},【解析】(1)化简集合A,B,利用并集及交集的概念运算即得;(2)分a>1,0<a<1讨论,利用条件列出不等式即得.【小问1详解】∵A={x|2x>4}={x|x>2},B={x||x-a|<2}={x|a-2<x<a+2},∴当a=2时,B={x|0<x<4},所以A∪B={x|x>0},A∩B={x|2<x<4};【小问2详解】当a>1时,C={x|logax<0}={x|0<x<1},因为C⊆B,所以,解得-1≤a≤2,因为a>1,此时1<a≤2,当0<a<1时,C={x|logax<0}={x|x>1},此时不满足C⊆B,综上,a的取值范围为{a|1<a≤2}20、(1)见解析;(2)见解析.【解析】(1)设与交于点,连接易证得四边形为平行四边形,所以,进而得证;(2)先证得平面,再证得⊥平面,又,得平面,从而证得平面,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无人机测绘技术在建筑工程测量中的应用
- 石河子大学《智能计算系统》2022-2023学年期末试卷
- 石河子大学《虚拟仪器》2021-2022学年第一学期期末试卷
- 婚外情检讨书(合集四篇)
- 石河子大学《外国刑法学原理》2022-2023学年期末试卷
- 石河子大学《入学教育与军事技能》2023-2024学年第一学期期末试卷
- 石河子大学《化工原理实验二》2021-2022学年第一学期期末试卷
- 沈阳理工大学《现代控制理论》2021-2022学年期末试卷
- 沈阳理工大学《汽车设计》2021-2022学年第一学期期末试卷
- 沈阳理工大学《计算机控制系统》2021-2022学年期末试卷
- 第五节 错觉课件
- 2024-2030年陕西省煤炭行业市场发展分析及发展前景预测研究报告
- 【课件】Unit+3+SectionB+1a-2b+课件人教版英语七年级上册
- 干部人事档案任前审核登记表范表
- 期中阶段测试卷(六)-2024-2025学年语文三年级上册统编版
- 北京市昌平区2023-2024学年高二上学期期末质量抽测试题 政治 含答案
- 第7课《不甘屈辱奋勇抗争》(第2课时)(教学设计)-部编版道德与法治五年级下册
- 高校实验室安全基础学习通超星期末考试答案章节答案2024年
- 国开2024年《中国法律史》平时作业1-3答案
- 烟草专卖食堂燃气泄露及火灾事故现场应急处置方案
- 国家电网公司十八项反措
评论
0/150
提交评论