版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省定远县启明中学2024届高一上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.若,,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限2.若,,则的值为()A. B.C. D.3.已知角的终边与单位圆相交于点,则=()A. B.C. D.4.已知函数,的值域为,则实数的取值范围是A. B.C. D.5.已知函数f(x)=,若f(f(-1))=6,则实数a的值为()A.1 B.C.2 D.46.已知直线及三个互不重合的平面,,,下列结论错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则7.设,若,则的最小值为A. B.C. D.8.在同一直角坐标系中,函数和(且)的图像可能是()A. B.C. D.9.已知全集,集合1,2,3,,,则A.1, B.C. D.3,10.已知函数则的值为()A. B.C.0 D.111.函数是上的偶函数,则的值是A. B.C. D.12.函数y=ax+1﹣1(a>0,a≠1)恒过的定点是()A.(1,﹣1) B.(0,0)C.(0,﹣1) D.(﹣1,0)二、填空题(本大题共4小题,共20分)13.已知扇形半径为8,弧长为12,则中心角为__________弧度,扇形面积是________14.已知一等腰三角形的周长为12,则将该三角形的底边长y(单位:)表示为腰长x(单位:)的函数解析式为___________.(请注明函数的定义域)15.已知函数,.(1)若函数的值域为R,求实数m的取值范围;(2)若函数是函数的反函数,当时,函数的最小值为,求实数m的值;(3)用表示m,n中的最大值,设函数,有2个零点,求实数m的范围.16.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________三、解答题(本大题共6小题,共70分)17.设函数.(1)若,且均为正实数,求的最小值,并确定此时实数的值;(2)若满足在上恒成立,求实数的取值范围.18.已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围19.已知(1)若a=2,求(2)已知全集,若,求实数a的取值范围20.已知函数,图象上相邻的最高点与最低点的横坐标相差,______;(1)①的一条对称轴且;②的一个对称中心,且在上单调递减;③向左平移个单位得到的图象关于轴对称且从以上三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(2)在(1)的情况下,令,,若存在使得成立,求实数的取值范围.21.已知函数的图象关于直线对称,且图象相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.22.已知函数f(x)=2sin(ωx+φ)+1()的最小正周期为π,且(1)求ω和φ的值;(2)函数f(x)的图象纵坐标不变的情况下向右平移个单位,得到函数g(x)的图象,①求函数g(x)的单调增区间;②求函数g(x)在的最大值
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】本题考查三角函数的性质由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为2、D【解析】根据诱导公式即可直接求值.【详解】因为,所以,又因为,所以,所以.故选:D.3、C【解析】先利用三角函数的定义求角的正、余弦,再利用二倍角公式计算即可.【详解】角的终边与单位圆相交于点,故,所以,故.故选:C.4、B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.5、A【解析】利用分段函数的解析式,由里及外逐步求解函数值得到方程求解即可【详解】函数f(x)=,若f(f(-1))=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1故选A【点睛】本题考查分段函数应用,函数值的求法,考查计算能力6、B【解析】对A,可根据面面平行的性质判断;对B,平面与不一定垂直,可能相交或平行;对C,可根据面面平行的性质判断;对D,可通过在平面,中作直线,推理判断.【详解】解:对于选项A:根据面面平行的性质可知,若,,则成立,故选项A正确,对于选项B:垂直于同一平面的两个平面,不一定垂直,可能相交或平行,故选项B错误,对于选项C:根据面面平行的性质可知,若,,则成立,故选项C正确,对于选项D:若,,,设,,在平面中作一条直线,则,在平面中作一条直线,则,,,又,,,故选项D正确,故选:B.7、D【解析】依题意,,根据基本不等式,有.8、B【解析】利用函数的奇偶性及对数函数的图象的性质可得.【详解】由函数,可知函数为偶函数,函数图象关于轴对称,可排除选项AC,又的图象过点,可排除选项D.故选:B.9、C【解析】可求出集合B,然后进行交集的运算,即可求解,得到答案【详解】由题意,可得集合,又由,所以故选C【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合B,熟记集合的交集运算是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解析】根据分段函数解析式及指数对数的运算法则计算可得;【详解】解:因为,所以,所以,故选:D11、C【解析】分析:由奇偶性可得,化为,从而可得结果.详解:∵是上的偶函数,则,即,即成立,∴,又∵,∴.故选C点睛:本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.12、D【解析】由,可得当时,可求得函数y=ax+1﹣1(a>0,a≠1)所过定点.【详解】因为,所以当时有,,即当时,,则当时,,所以当时,恒有函数值.所以函数y=ax+1﹣1(a>0,a≠1)恒过的定点.故选:D【点睛】本题考查指数函数的图像性质,函数图像过定点,还可以由图像间的平移关系得到答案,属于基础题.二、填空题(本大题共4小题,共20分)13、.【解析】详解】试题分析:根据弧长公式得,扇形面积考点:弧度制下弧长公式、扇形面积公式的应用14、【解析】根据题意得,再结合两边之和大于第三边,底边长大于得,进而得答案.【详解】解:根据题意得,由三角形两边之和大于第三边得,所以,即,又因为,解得所以该三角形的底边长y(单位:)表示为腰长x(单位:)的函数解析式为故答案为:15、(1)(2)(3)【解析】(1)函数的值域为R,可得,求解即可;(2)设分类论可得m的值;(3)对m分类讨论可得结论.【小问1详解】值域为R,∴【小问2详解】,.设,,①若即时,,②若,即时,,舍去③若即时,,无解,舍去综上所示:【小问3详解】①显然,当时,在无零点,舍去②当时,,舍去③时,解分别为,,只需控制,不要均大于等于1即可Ⅰ:,,,舍去Ⅱ:,无解,综上:16、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.三、解答题(本大题共6小题,共70分)17、(1)的最小值为3,此时;(2)【解析】(1)由可得,则由结合基本不等式即可求出;(2)不等式恒成立等价于对恒成立,利用判别式可得对恒成立,再利用判别式即可求出的范围.【详解】(1),则,,当且仅当,即时等号成立,的最小值为3,此时;(2),则,即对恒成立,则,即对恒成立,则,解得.【点睛】本题考查基本不等式的应用,考查一元二次不等式的恒成立问题,属于中档题.18、(1);(2);(3)【解析】(1)求出集合,利用并集的定义可求得集合;(2)利用可得出关于实数的不等式组,由此可解得实数的取值范围;(3)分和两种情况讨论,结合可得出关于实数的不等式组,可求得实数的取值范围.【详解】(1)当时,,则;(2)由知,解得,即的取值范围是;(3)由得①若,即时,符合题意;②若,即时,需或得或,即综上知,即实数的取值范围为【点睛】易错点睛:在求解本题第(3)问时,容易忽略的情况,从而导致求解错误.19、(1);(2).【解析】(1)根据解绝对值不等式的方法,结合二次根式的性质、集合交集的定义进行求解即可;(2)根据解绝对值不等式的方法、集合补集的定义,结合子集的性质进行求解即可.【小问1详解】当a=2时,因为,,所以;【小问2详解】,因为,所以,因此有或,解得或,因此实数a的取值范围为.20、(1)选①②③,;(2).【解析】(1)根据题意可得出函数的最小正周期,可求得的值,根据所选的条件得出关于的表达式,然后结合所选条件进行检验,求出的值,综合可得出函数的解析式;(2)求得,由可计算得出,进而可得出,由参变量分离法得出,利用基本不等式求得的最小值,由此可得出实数的取值范围.【详解】(1)由题意可知,函数的最小正周期为,.选①,因为函数的一条对称轴,则,解得,,所以,的可能取值为、.若,则,则,不合乎题意;若,则,则,合乎题意.所以,;选②,因为函数的一个对称中心,则,解得,,所以,的可能取值为、.若,则,当时,,此时,函数在区间上单调递增,不合乎题意;若,则,当时,,此时,函数在区间上单调递减,合乎题意;所以,;选③,将函数向左平移个单位得到的图象关于轴对称,所得函数为,由于函数的图象关于轴对称,可得,解得,,所以,的可能取值为、.若,则,,不合乎题意;若,则,,合乎题意.所以,;(2)由(1)可知,所以,,当时,,,所以,,所以,,,,,则,由可得,所以,,由基本不等式可得,当且仅当时,等号成立,所以,.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1),;(2),;(3),;(4),.21、(1),;(2)【解析】(1)根据对称轴和周期可求和的值(2)由题设可得,利用同角的三角函数的基本关系式可得,利用诱导公式和两角和的正弦可求的值【详解】(1)因为图象相邻两个最高点的距离为,故周期为,所以,故又图象关于直线,故,所以,因为,故(2)由(1)得,因为,故,因为,故,故又【点睛】方法点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025项目施工合同模板
- 2025房屋建筑合同模板 房屋建筑合同
- 2025专业版电子版权委托代理合同
- 二零二五年度XX房地产公司收取管理费合作协议3篇
- 二零二五年度股权代持与公司研发创新合作协议3篇
- 2025年度农机设备委托管理与农业人才培养协议3篇
- 二零二五年度特色农产品电商平台合作合同范本3篇
- 2025年度养老院老人外出看护责任约定协议3篇
- 2025年度全新二零二五年度离婚后子女心理辅导及关爱协议3篇
- 二零二五年度养殖场品牌授权与合作承包协议3篇
- 2022一、二级个人防护(穿脱防护服)操作评分表(精华版)
- 膀胱癌诊疗指南课件
- 大班唱歌《吹泡泡》课件
- 护理人文关怀示范病房创建及成效14-44-16
- DB37∕T 5112-2018 村庄道路建设规范
- 牵引供电系统远动技术概述讲解课件
- 义务教育《道德与法治》课程标准(2022年版)
- 乙肝五项详解(课堂PPT)
- TD汽车维修公司管理制度和岗位职责汇编-30页
- 数字化设计与制造PPT课件
- 个人信息查询使用授权书
评论
0/150
提交评论