安徽省宣城市2024届数学高一上期末联考模拟试题含解析_第1页
安徽省宣城市2024届数学高一上期末联考模拟试题含解析_第2页
安徽省宣城市2024届数学高一上期末联考模拟试题含解析_第3页
安徽省宣城市2024届数学高一上期末联考模拟试题含解析_第4页
安徽省宣城市2024届数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宣城市2024届数学高一上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知命题,则p的否定为()A. B.C. D.2.函数的零点所在区间是A. B.C. D.3.下列函数中,周期为的是()A. B.C. D.4.若函数是函数(且)的反函数,且,则()A. B.C. D.5.已知函数在上图像关于轴对称,若对于,都有,且当时,,则的值为()A. B.C. D.6.已知函数,的最值情况为()A.有最大值,但无最小值 B.有最小值,有最大值1C.有最小值1,有最大值 D.无最大值,也无最小值7.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.8.若,则()A. B.aC.2a D.4a9.对任意正实数,不等式恒成立,则实数的取值范围是()A. B.C. D.10.已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若不存在,使得与同时成立,则实数a的取值范围是________.12.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算方法.如图所示,弧田是由圆弧和其对弦围成的图形,若弧田所在圆的半径为6,弦的长是,则弧田的弧长为________;弧田的面积是________.13.函数的部分图象如图所示.则函数的解析式为______14.已知正数x、y满足x+=4,则xy的最大值为_______.15.若函数的定义域为,则函数的定义域为______16.函数的定义域是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数满足:.(1)证明:;(2)对满足已知的任意值,都有成立,求m的最小值.18.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图(1)所示;产品的利润与投资的算术平方根成正比,其关系如图(2)所示(注:利润和投资的单位均为万元)图(1)图(2)(1)分别求,两种产品的利润关于投资的函数解析式(2)已知该企业已筹集到18万元资金,并将全部投入,两种产品的生产①若平均投入两种产品的生产,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?19.已知函数,.(1)求函数的值域;(2)若存在实数,使得在上有解,求实数的取值范围.20.设函数.(1)当时,若对于,有恒成立,求取值范围;(2)已知,若对于一切实数恒成立,并且存在,使得成立,求的最小值.21.化简下列各式:;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】全称命题的否定为存在命题,利用相关定义进行判断即可【详解】全称命题的否定为存在命题,命题,则为.故选:D2、C【解析】根据函数零点存在性定理进行判断即可【详解】∵,,∴,∴函数在区间(2,3)上存在零点故选C【点睛】求解函数零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件3、C【解析】对于A、B:直接求出周期;对于C:先用二倍角公式化简,再求其周期;对于D:不是周期函数,即可判断.【详解】对于A:的周期为,故A错误;对于B:的周期为,故B错误;对于C:,所以其周期为,故C正确;对于D:不是周期函数,没有最小正周期,故D错误.故选:C4、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.5、C【解析】据条件即可知为偶函数,并且在,上是周期为2的周期函数,又,时,,从而可得出,,从而找出正确选项【详解】解:函数在上图象关于轴对称;是偶函数;又时,;在,上为周期为2的周期函数;又,时,;,;故选:【点睛】考查偶函数图象的对称性,偶函数的定义,周期函数的定义,以及已知函数求值,属于中档题6、C【解析】利用二次函数的图象与性质,得到二次函数的单调性,即可求解最值,得到答案.【详解】由题意,函数,可得函数在区间上单调递增,所以当时,函数取得最小值,最小值为,当时,函数取得最小值,最小值为,故选C.【点睛】本题主要考查了二次函数的性质及其应用,其中解答中熟练利用二次函数的性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.7、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D8、A【解析】利用对数的运算可求解.【详解】,故选:A9、C【解析】先根据不等式恒成立等价于,再根据基本不等式求出,即可求解.【详解】解:,即,即又当且仅当“”,即“”时等号成立,即,故.故选:C.10、B【解析】根据给定条件,探讨函数的性质,再把不等式等价转化,利用的性质求解作答.【详解】因为定义在上的偶函数,则,即是R上的偶函数,又在上单调递增,则在上单调递减,,即,因此,,平方整理得:,解得,所以原不等式的解集是.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】当恒成立,不存在使得与同时成立,当时,恒成立,则需时,恒成立,只需时,,对的对称轴分类讨论,即可求解.【详解】若时,恒成立,不存使得与同时成立,则时,恒成立,即时,,对称轴为,当时,即,解得,当,即为抛物线顶点的纵坐标,,只需,.若恒成立,不存在使得与同时成立,综上,的取值范围是.故答案为:.【点睛】本题考查了二次函数和一次函数的图像和性质,不等式恒成立和能成立问题的解法,考查分类讨论和转化化归的思想方法,属于较难题.12、①.②.【解析】在等腰三角形中求得,由扇形弧长公式可得弧长,求出扇形面积减去三角形面积可得弧田面积【详解】∵弧田所在圆的半径为6,弦的长是,∴弧田所在圆的圆心角,∴弧田的弧长为;扇形的面积为,三角形的面积为,∴弧田的面积为.故答案为:;13、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.14、8【解析】根据,利用基本不等式即可得出答案.【详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.15、【解析】利用的定义域,求出的值域,再求x的取值范围.【详解】的定义域为即的定义域为故答案为:16、##【解析】利用对数的真数大于零可求得原函数的定义域.【详解】对于函数,,解得,故函数的定义域为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由二次不等式恒成立,可得判别式小于等于0,化简即可得证;(2)由(1)可得,分别讨论或,运用参数分离和函数的单调性,可求得所求的最小值.【详解】(1)证明:.即恒成立.则,化简得;(2)由(1)得,当时,,令,则,令在上单调递增,所以,所以;当时,,所以,此时或0,,从而有,综上可得,m的最小值为.【点睛】方法点睛:本题考查不等式的证明,以及不等式恒成立问题,常运用参变分离的方法,运用函数的单调性,最值的方法得以解决.18、(1),;(2)当,两种产品分别投入2万元,16万元时,可使该企业获得最大利润,最大利润为万元【解析】(1)设投资为万元(),设,,根据函数的图象,求得的值,即可得到函数的解析式;,(2)①由(1)求得,,即可得到总利润.②设产品投入万元,产品投入万元,得到则,结合二次函数的图象与性质,即可求解【详解】(1)设投资为万元(),,两种产品所获利润分别为,万元,由题意可设,,其中,是不为零的常数所以根据图象可得,,,,所以,(2)①由(1)得,,所以总利润为万元②设产品投入万元,产品投入万元,该企业可获总利润为万元,则,令,则,且,则,当时,,此时,当,两种产品分别投入2万元,16万元时,可使该企业获得最大利润,最大利润为万元【点睛】本题主要考查了函数的实际应用问题,其中解答中能够从图象中准确地获取信息,利用待定系数法求得函数的解析式,再结合二次函数的图象与性质是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题19、(1)(2)【解析】(1)结合题意得Mx=log2x,0<x<2(2)由题知,进而换元得在上有解,再根据对勾函数求最值即可;【小问1详解】解:函数,因为,所以当时,,.当时,,.即Mx当时,;当时,.综上:值域为.【小问2详解】解:可以化为即:令,,所以,所以所以在上有解即在上有解令,则而当且仅当,即时取等号所以实数的取值范围是20、(1)(2)【解析】(1)据题意知,把不等式的恒成立转化为恒成立,设,则,根据二次函数的性质,求得函数的最大致,即可求解.(2)由题意,根据二次函数的性质,求得,进而利用基本不等式,即可求解.【详解】(1)据题意知,对于,有恒成立,即恒成立,因此,设,所以,函数在区间上是单调递减的,,(2)由对于一切实数恒成立,可得,由存在,使得成立可得,,,当且仅当时等号成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论