版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省邵通市水富县云天化中学高一数学第一学期期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.对于直线的截距,下列说法正确的是A.在y轴上的截距是6 B.在x轴上的截距是6C.在x轴上的截距是3 D.在y轴上的截距是-32.直线l1的倾斜角,直线l1⊥l2,则直线l2的斜率为A.- B.C.- D.3.某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为()A. B.C. D.4.某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处应依次写上A.快、新、乐 B.乐、新、快C.新、乐、快 D.乐、快、新5.若,是第二象限角,则()A. B.3C.5 D.6.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A.-18 B.-12C.-8 D.-67.已知偶函数在上单调递增,则对实数、,“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.为配制一种药液,进行了二次稀释,先在容积为40L的桶中盛满纯药液,第一次将桶中药液倒出用水补满,搅拌均匀,第二次倒出后用水补满,若第二次稀释后桶中药液含量不超过容积的60%,则V的最小值为()A.5 B.10C.15 D.209.已知函数的最大值与最小值的差为2,则()A.4 B.3C.2 D.10.圆的半径和圆心坐标分别为A. B.C. D.11.幂函数在区间上单调递增,且,则的值()A.恒大于0 B.恒小于0C.等于0 D.无法判断12.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.100二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数(,)的部分图象如图所示,则的值为14.已知函数,若,则实数_________15.集合,用列举法可以表示为_________16.对于函数和,设,,若存在、,使得,则称与互为“零点关联函数”.若函数与互为“零点关联函数”,则实数的取值范围为()A. B. C. D.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图1,直角梯形ABCD中,,,.如图2,将图1中沿AC折起,使得点D在平面ABC上的正投影G在内部.点E为AB的中点.连接DB,DE,三棱锥D-ABC的体积为.对于图2的几何体(1)求证:;18.函数的定义域.19.已知且满足不等式.(1)求不等式;(2)若函数在区间有最小值为,求实数值20.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,当水车上水斗A从水中浮现时开始计算时间,点A沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过秒后,水斗旋转到点,已知,设点的坐标为,其纵坐标满足(1)求函数的解析式;(2)当水车转动一圈时,求点到水面的距离不低于的持续时间21.已知正方体,分别为和上的点,且,.(1)求证:;(2)求证:三条直线交于一点.22.是否存在锐角,使得:,同时成立?若存在,求出锐角的值;若不存在,说明理由.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】令,得y轴上的截距,令得x轴上的截距2、C【解析】由题意可得L2的倾斜角等于30°+90°=120°,从而得到L2的斜率为tan120°,运算求得结果【详解】如图:直线L1的倾斜角α1=30°,直线L1⊥L2,则L2的倾斜角等于30°+90°=120°,∴L2的斜率为tan120°=﹣tan60°,故选C【点睛】本题主要考查直线的倾斜角和斜率的关系,体现了数形结合的数学思想,属于基础题3、A【解析】先由三视图得出该几何体的直观图,结合题意求解即可.【详解】由三视图可知其直观图,该几何体为四棱锥P-ABCD,最长的棱为PA,则最长的棱长为,故选A【点睛】本题主要考查几何体的三视图,属于基础题型.4、A【解析】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,即可得出结论【详解】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,故选A【点睛】本题考查四棱锥的结构特征,考查学生对图形的认识,属于基础题.5、C【解析】由题知,再根据诱导公式与半角公式计算即可得答案.【详解】解:因为,是第二象限角,所以,所以.故选:C6、D【解析】首先根据题意得到,再根据的奇偶性求解即可.【详解】由题知:,所以当时,,又因为函数是奇函数,所以.故选:D7、C【解析】直接利用充分条件和必要条件的定义判断.【详解】因为偶函数在上单调递增,若,则,而等价于,故充分必要;故选:C8、B【解析】依据题意列出不等式即可解得V的最小值.【详解】由,解得则V的最小值为10.故选:B9、C【解析】根据解析式可得其单调性,根据x的范围,可求得的最大值和最小值,根据题意,列出方程,即可求得a值.【详解】由题意得在上为单调递增函数,所以,,所以,解得,又,所以.故选:C10、D【解析】半径和圆心坐标分别为,选D11、A【解析】由已知条件求出的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【详解】由函数是幂函数,可得,解得或当时,;当时,因为函数在上是单调递增函数,故又,所以,所以,则故选:A12、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;14、【解析】分和求解即可.【详解】当时,,所以(舍去);当时,,所以(符合题意).故答案为:.15、##【解析】根据集合元素属性特征进行求解即可.【详解】因为,所以,可得,因为,所以,集合故答案为:16、C【解析】先求得函数的零点为,进而可得的零点满足,由二次函数的图象与性质即可得解.【详解】由题意,函数单调递增,且,所以函数的零点为,设的零点为,则,则,由于必过点,故要使其零点在区间上,则或,即或,所以,故选:C.【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数零点的范围,再由二次函数的图象与性质即可得解.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)证明见解析;(2).【解析】(1)取AC的中点F,连接DF,CE,EF,证明AC⊥平面DEF即可.(2)以G为坐标原点,建立空间直角坐标系,利用向量的方法求解线面角.【小问1详解】取AC的中点F,连接DF,CE,EF,则△DAC,△EAC均为等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE⊂平面DEF,∴DE⊥AC【小问2详解】连接GA,GC,∵DG⊥平面ABC,而GA⊂平面ABC,GC⊂平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分线上,又EA=EC,∴E在AC的垂直平分线上,∴EG垂直平分AC,又F为AC的中点,∴E,F,G共线∴S△ABC=×|AC|×|BC|=×6×6=18,∴VDABC=×S△ABC×|DG|=×18×|DG|=12,∴DG=2在Rt△DGF中,|GF|=以G为坐标原点,GM为x轴,GE为y轴,GD为z轴,建立如图所示的空间直角坐标系,则A(3,-1,0),E(0,2,0),C(-3,-1,0),D(0,0,2),∴=(0,2,-2),=(3,-1,-2),=(-3,-1,-2),设平面DAC的法向量为=(x,y,z),则,得,令z=1,得:,于是,.18、【解析】函数的定义域是,由对数函数的性质能够求出结果【详解】整理得解得函数的定义域为【点睛】本题考查对数函数的定义域,是基础题.解题时要认真审题,注意对数性质的合理运用19、(1);(2).【解析】(1)运用指数不等式的解法,可得的范围,再由对数不等式的解法,可得解集;(2)由题意可得函数在递减,可得最小值,解方程可得的值试题解析:(1)∵22a+1>25a-2.∴2a+1>5a-2,即3a<3∴a<1,∵a>0,a<1∴0<a<1.∵loga(3x+1)<loga(7-5x).∴等价为,即,∴,即不等式的解集为(,).(2)∵0<a<1∴函数y=loga(2x-1)在区间[3,6]上为减函数,∴当x=6时,y有最小值为-2,即loga11=-2,∴a-2==11,解得a=.20、(1);(2)20秒.【解析】(1)根据OA求出R,根据周期T=60求出ω,根据f(0)=-2求出φ;(2)问题等价于求时t的间隔.小问1详解】由图可知:,周期,∵t=0时,在,∴,∴或,,,且,则.∴.【小问2详解】点到水面的距离等于时,y=2,故或,即,,∴当水车转动一圈时,求点到水面的距离不低于的持续时间20秒.21、(1)详见解析;(2)详见解析【解析】(1)连结和,由条件可证得和,从而得到∥.(2)结合题意可得直线和必相交,根据线面关系再证明该交点直线上即可得到结论【详解】证明:(1)如图,连结和,在正方体中,,∵,∴,又,,∴又在正方体中,,,∴,又,∴同理可得,又,∴∴∥.(2)由题意可得(或者和不平行),又由(1)知∥,所以直线和必相交,不妨设,则,又,所以,同理因为,所以,所以、、三条直线交于一点【点睛】(1)证明两直线平行时,可根据三种平行间的转化关系进行证明,也可利用线面垂直的性质进行证明,解题时要注意合理选择方法进行求解(2)证明三线共点的方法是:先证明其中的两条直线相交,再证明该交点在第三条直线上.解题时要依据空间中的线面关系及三个公理,并
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度湖北武汉建筑设计咨询合同2篇
- 二零二五年度典当行艺术品抵押借款合同专业版3篇
- 2025年度蔬菜大棚出售与农业物联网技术合作合同
- 2025年农村土地互换与农村社会治安综合治理合同
- 二零二五年度农村土地承包经营权与农村农业产业链延伸合同3篇
- 2025年度互联网公司收购游戏开发团队合同3篇
- 2025年度农村宅基地流转购买合同3篇
- 2025年度企业办公区深度清洁与环保服务合同3篇
- 二零二五年度公厕保洁与节能减排技术合作合同2篇
- 二零二五年度员工职务秘密及保密风险评估合同3篇
- 中国矿业大学《自然辩证法》2022-2023学年期末试卷
- TCWAN 0105-2024 搅拌摩擦焊接机器人系统技术条件
- 江苏省期无锡市天一实验学校2023-2024学年英语七年级第二学期期末达标检测试题含答案
- 耕地占补平衡系统课件
- 2022年山东师范大学自考英语(二)练习题(附答案解析)
- 医院工作流程图较全
- NB/T 11431-2023土地整治煤矸石回填技术规范
- 医疗器械集中采购文件(2024版)
- 上海市2024-2025学年高一语文下学期分科检测试题含解析
- 血液透析高钾血症的护理查房
- 佛山市2022-2023学年七年级上学期期末考试数学试题【带答案】
评论
0/150
提交评论