2024届云南省昆明市呈贡区第一中学数学高一上期末质量检测试题含解析_第1页
2024届云南省昆明市呈贡区第一中学数学高一上期末质量检测试题含解析_第2页
2024届云南省昆明市呈贡区第一中学数学高一上期末质量检测试题含解析_第3页
2024届云南省昆明市呈贡区第一中学数学高一上期末质量检测试题含解析_第4页
2024届云南省昆明市呈贡区第一中学数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省昆明市呈贡区第一中学数学高一上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.2.若函数的定义域为,则函数的定义域是()A B.C. D.3.逻辑斯蒂函数fx=11+eA.函数fx的图象关于点0,fB.函数fx的值域为(0,1C.不等式fx>D.存在实数a,使得关于x的方程fx4.半径为2,圆心角为的扇形的面积为()A. B.C. D.25.如图,AB为半圆的直径,点C为的中点,点M为线段AB上的一点(含端点A,B),若,则的取值范围是()A. B.C. D.6.已知等差数列的前项和为,若,则A.18 B.13C.9 D.77.定义运算:,则函数的图像是()A. B.C. D.8.已知,若不等式恒成立,则的最大值为()A.13 B.14C.15 D.169.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内10.已知函数在上是增函数,则实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.____________12.已知函数,若对恒成立,则实数的取值范围是___________.13.若,是夹角为的两个单位向量,则,的夹角为________.14.已知函数,的部分图象如图所示,其中点A,B分别是函数的图象的一个零点和一个最低点,且点A的横坐标为,,则的值为________.15.函数的单调减区间是__________16.已知偶函数,x∈R,满足f(1-x)=f(1+x),且当0<x<1时,f(x)=ln(x+),e为自然数,则当2<x<3时,函数f(x)的解析式为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)若不等式的解集是,求不等式的解集;(2)当时,在上恒成立,求实数的取值范围18.如图,点,,在函数的图象上(1)求函数的解析式;(2)若函数图象上的两点,满足,,求四边形OMQN面积的最大值19.某行业计划从新的一年2020年开始,每年的产量比上一年减少的百分比为,设n年后(2020年记为第1年)年产量为2019年的a倍.(1)请用a,n表示x.(2)若,则至少要到哪一年才能使年产量不超过2019年的25%?参考数据:,.20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.21.冰雪装备器材产业是冰雪产业重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A2、B【解析】根据题意可得出关于的不等式组,由此可解得函数的定义域.【详解】由于函数的定义域为,对于函数,有,解得.因此,函数的定义域是.故选:B.3、D【解析】A选项,代入f-x,计算fx+f-x=1和f0=12,可得对称性;B选项,由【详解】解:对于A:fx=11+e-x=ex1+ex,f-x对于B:fx=11+e-x,易知e-x>0,所以1+e对于C:由fx=11+e-x容易判断,函数fx在R上单调递增,且f对于D:因为函数fx在R上单调递增,所以方程fx故选:D.4、D【解析】利用扇形的面积公式即得.【详解】由题可得.故选:D5、D【解析】根据题意可得出,然后根据向量的运算得出,从而可求出答案.【详解】因为点C为的中点,,所以,所以,因为点M为线段AB上的一点,所以,所以,所以的取值范围是,故选:D.6、B【解析】利用等差数列通项公式、前项和列方程组,求出,.由此能求出【详解】解:等差数列的前项和为,,,,解得,故选【点睛】本题考查等差数列第7项的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题7、A【解析】先求解析式,再判断即可详解】由题意故选:A【点睛】本题考查函数图像的识别,考查指数函数性质,是基础题8、D【解析】用分离参数法转化为恒成立,只需,再利用基本不等式求出的最小值即可.【详解】因为,所以,所以恒成立,只需因为,所以,当且仅当时,即时取等号.所以.即的最大值为16.故选:D9、B【解析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【点睛】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明10、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”

函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,故答案为.考点:对数的运算.12、【解析】需要满足两个不等式和对都成立.【详解】和对都成立,令,得在上恒成立,当时,只需即可,解得;当时,只需即可,解得(舍);综上故答案为:13、【解析】由题得,,再利用向量的夹角公式求解即得解.【详解】由题得,所以.所以,的夹角为.故答案为:【点睛】本题主要考查平面向量的模和数量积的计算,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.14、##【解析】利用条件可得,进而利用正弦函数的图象的性质可得,再利用正弦函数的性质即求.【详解】由题知,设,则,∴,∴,∴,将点代入,解得,又,∴.故答案为:.15、【解析】,在上递增,在上递增,在上递增,在上递减,复合函数的性质,可得单调减区间是,故答案为.16、【解析】由f(1-x)=f(1+x),再由偶函数性质得到函数周期,再求当2<x<3时f(x)解析式【详解】因为f(x)是偶函数,满足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2当2<x<3时,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函数f(x)的解析式为f(x)=ln(x-2+)故答案为f(x)=ln(x-2+)【点睛】本题主要考查函数的奇偶性,考查利用函数的周期性求解析式,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)由题意,是方程的解,利用韦达定理求解,代入,结合一元二次函数、方程、不等式的关系求解即可;(2),代入转化不等式为,换元法求解的最大值即可【小问1详解】因为不等式的解集是,所以是方程的解由韦达定理解得故不等式为,即解得或故不等式得其解集为或【小问2详解】当时,在上恒成立,所以令,则令,则,由于均为的减函数故在上为减函数所以当时,取最大值,且最大值为3所以所以所以实数的取值范围为.18、(1)(2)【解析】(1)由图可求出,从而求得,由图可知函数处取得最小值,从而可求出的值,再将点的坐标代入函数中可求出,进而可求出函数的解析式,(2)由题意求得所以,,而四边形OMQN的面积为S,则,代入化简利用三角函数的性质可求得结果【小问1详解】由图可知的周期T满足,得又因为,所以,解得又在处取得最小值,即,得,所以,,解得,因为,所以.由,得,所以综上,【小问2详解】当时,,所以.由知此时记四边形OMQN的面积为S,则又因为,所以,所以当,即时,取得最大值所以四边形OMQN面积的最大值是19、(1)(2)2033【解析】(1)每年的产量比上一年减少的百分比为,那么n年后的产量为2019年的,即得;(2)将代入(1)中得到式子,解n,n取正整数。【详解】(1)依题意得,即,即.(2)由题得,即,则,即,则,又,,∴n的最小值为14.故至少要到2033年才能使年产能不超过2019年25%.【点睛】本题是一道函数实际应用题,注意求n时,n表示某一年,要取整数。20、(1);(2);(3).【解析】(1)由函数为奇函数可得,即,整理得,可得,解得,经验证不合题意.(2)根据单调性的定义可证明函数在区间上为增函数,从而可得在区间上的值域为,故,从而可得所有上界构成的集合为.(3)将问题转化为在上恒成立,整理得在上恒成立,通过判断函数的单调性求得即可得到结果试题解析:(1)∵函数是奇函数,∴,即,∴,∴,解得,当时,,不合题意,舍去∴.(2)由(1)得,设,令,且,∵;∴在上是减函数,∴在上是单调递增函数,∴在区间上是单调递增,∴,即,∴在区间上的值域为,∴,故函数在区间上的所有上界构成的集合为.(3)由题意知,上恒成立,∴,∴,因此在上恒成立,∴设,,,由知,设,则,,∴在上单调递减,在上单调递增,∴在上的最大值为,在上的最小值为,∴∴的取值范围.点睛:(1)本题属于新概念问题,解题的关键是要紧紧围绕所给出的新定义,然后将所给问题转化为函数的最值(或值域)问题处理(2)求函数的最值(或值域)时,利用单调性是常用的方法之一,为此需要先根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论