![北京市东城区第十一中学2024届数学高一上期末学业水平测试模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M01/2D/10/wKhkGWV2SI-AaySDAAGJ6yW2XT0503.jpg)
![北京市东城区第十一中学2024届数学高一上期末学业水平测试模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M01/2D/10/wKhkGWV2SI-AaySDAAGJ6yW2XT05032.jpg)
![北京市东城区第十一中学2024届数学高一上期末学业水平测试模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M01/2D/10/wKhkGWV2SI-AaySDAAGJ6yW2XT05033.jpg)
![北京市东城区第十一中学2024届数学高一上期末学业水平测试模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M01/2D/10/wKhkGWV2SI-AaySDAAGJ6yW2XT05034.jpg)
![北京市东城区第十一中学2024届数学高一上期末学业水平测试模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M01/2D/10/wKhkGWV2SI-AaySDAAGJ6yW2XT05035.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市东城区第十一中学2024届数学高一上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=2x-5零点在下列哪个区间内().A.(0,1) B.(1,2)C.(2,3) D.(3,4)2.已知幂函数过点则A.,且在上单调递减B.,且在单调递增C.且在上单调递减D.,且在上单调递增3.圆与圆有()条公切线A.0 B.2C.3 D.44.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.5.函数(其中为自然对数的底数)的图象大致为()A. B.C. D.6.如果角的终边在第二象限,则下列结论正确的是A. B.C. D.7.函数f(x)=tan的单调递增区间是()A.(k∈Z) B.(k∈Z)C.(k∈Z) D.(k∈Z)8.函数的零点所在区间为()A. B.C. D.9.已知()A. B.C. D.10.直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,则直线l2的斜率为()A. B.C.1 D.﹣1二、填空题:本大题共6小题,每小题5分,共30分。11.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.12.已知幂函数过定点,且满足,则的范围为________13.已知函数,若方程有四个不同的解,且,则的最小值是______,的最大值是______.14.已知,则_________15.化简=________16.已知f(x)=mx3-nx+1(m,n∈R),若f(-a)=3,则f(a)=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数,在内只取到一个最大值和一个最小值,且当时,;当时,(1)求此函数的解析式;(2)求此函数的单调递增区间18.已知函数为奇函数(1)求的值;(2)当时,关于的方程有零点,求实数的取值范围19.设函数,其中,且.(1)求的定义域;(2)当时,函数图象上是否存在不同两点,使过这两点的直线平行于轴,并证明.20.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.21.如图1,直角梯形ABCD中,,,.如图2,将图1中沿AC折起,使得点D在平面ABC上的正投影G在内部.点E为AB的中点.连接DB,DE,三棱锥D-ABC的体积为.对于图2的几何体(1)求证:;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用零点存在定理进行求解.【详解】因为单调递增,且;因为,所以区间内必有一个零点;故选:C.【点睛】本题主要考查零点所在区间的判断,判断的依据是零点存在定理,侧重考查数学运算的核心素养.2、A【解析】由幂函数过点,求出,从而,在上单调递减【详解】幂函数过点,,解得,,在上单调递减故选A.【点睛】本题考查幂函数解析式的求法,并判断其单调性,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.3、B【解析】由题意可知圆的圆心为,半径为,圆的圆心为半径为∵两圆的圆心距∴∴两圆相交,则共有2条公切线故选B4、B【解析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.5、A【解析】由为偶函数,排除选项B、D,又,排除选项C,从而即可得答案.【详解】解:令,因为,且定义域为,所以为偶函数,所以排除选项B、D;又,所以排除选项C;故选:A.6、B【解析】由题意结合三角函数的性质确定所给结论是否正确即可.【详解】角的终边在第二象限,则,AC错误;,B正确;当时,,,D错误本题选择B选项.【点睛】本题主要考查三角函数符号,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.7、B【解析】运用整体代入法,结合正切函数的单调区间可得选项.【详解】由kπ-<2x-<kπ+(k∈Z),得<x<(k∈Z),所以函数f(x)=tan的单调递增区间为(k∈Z).故选:B.【点睛】本题考查正切函数的单调性,属于基础题.8、B【解析】由零点存在定理判定可得答案.【详解】因为在上单调递减,且,,所以的零点所在区间为故选:B9、D【解析】利用诱导公式对式子进行化简,转化为特殊角的三角函数,即可得到答案;【详解】,故选:D10、C【解析】利用直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,则,解出即可.【详解】因为直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直.所以,即.解得:.故选:C【点睛】本题考查由两条直线互相垂直求参数的问题,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分别计算出的长度,然后结合二面角的求法,找出二面角,即可.【详解】结合题意可知,所以,而发现所以,结合二面角找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故为所求的二面角,为【点睛】本道题目考查了二面角的求法,寻求二面角方法:两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角12、【解析】根据幂函数所过的点求出解析式,利用奇偶性和单调性去掉转化为关于的不等式即可求解.【详解】设幂函数,其图象过点,所以,即,解得:,所以,因为,所以为奇函数,且在和上单调递减,所以可化为,可得,解得:,所以的范围为,故答案为:.13、①.1②.4【解析】画出的图像,再数形结合分析参数的的最小值,再根据对称性与函数的解析式判断中的定量关系化简再求最值即可.【详解】画出的图像有:因为方程有四个不同的解,故的图像与有四个不同的交点,又由图,,故的取值范围是,故的最小值是1.又由图可知,,,故,故.故.又当时,.当时,,故.又在时为减函数,故当时取最大值.故答案为:(1).1(2).4【点睛】本题主要考查了数形结合求解函数零点个数以及范围的问题,需要根据题意分析交点间的关系,并结合函数的性质求解.属于难题.14、【解析】两边同时取以15为底的对数,然后根据对数性质化简即可.【详解】因为所以,所以,故答案为:15、【解析】利用对数的运算法则即可得出【详解】解:原式lg0.12=2+2lg10﹣1=2﹣2故答案为【点睛】本题考查了对数的运算法则,属于基础题16、【解析】直接证出函数奇偶性,再利用奇偶性得解【详解】由题意得,所以,所以为奇函数,所以,所以【点睛】本题是函数中的给值求值问题,一般都是利用函数的周期性和奇偶性把未知的值转化到已知值上,若给点函数为非系非偶函数可试着构造一个新函数为奇偶函数从而求解三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由函数的最值求得振幅A,利用周期公式求得,根据五点法求,进而求得解析式;(2)依据正弦函数单调区间,列出不等式,解之即可得到函数的单调递增区间【详解】(1)在内函数只取到一个最大值和一个最小值,当时,;当时,,则,函数的最小正周期,则由,可得,则此函数的解析式;(2)由,可得,则函数的单调递增区间为18、(1)(2)【解析】(1)利用函数为奇函数所以即得的值(2)方程有零点,转化为求的值域即可得解.试题解析:(1)∵,∴,∴(2)∵,∴,∵,∴,∴,∴19、(1)当时,定义域为;当时,定义域为.(2)不存在,证明见解析.【解析】(1)首先根据题意得到,再分类讨论解不等式即可.(2)首先根据单调性定义得到函数在为增函数,从而得到函数图像上不存在不同两点,使过这两点的直线平行于轴.【详解】(1)由题知:,①当时,即,则,定义域为.②当时,即,则,定义域为.综上,当时,定义域为;当时,定义域为.(2)因为,所以函数的定义域为,任取,且,因为,所以,因为,所以,所以,即,所以,函数在为增函数,所以函数图象上不存在不同两点,使过这两点的直线平行于轴.20、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【小问1详解】∵为奇函数,∴,得,则令,得.【小问2详解】(i),∵为奇函数,∴为奇函数,∴函数的图象关于点对称.(ii)在区间上单调递增,∴在区间上的值域为,记在区间上的值域为,由对,总,使得成立知,①当时,上单调递增,由对称性知,在上单调递增,∴在上单调递增,只需即可,得,∴满足题意;②当时,在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减,∴在上单调递减,在上单调递增,在上单调递减,∴或,当时,,,∴满足题意;③当时,在上单调递减,由对称性知,在上单调递减,∴在上单调递减,只需即可,得,∴满足题意.综上所述,的取值范围为.21、(1)证明见解析;(2).【解析】(1)取AC的中点F,连接DF,CE,EF,证明AC⊥平面DEF即可.(2)以G为坐标原点,建立空间直角坐标系,利用向量的方法求解线面角.【小问1详解】取AC的中点F,连接DF,CE,EF,则△DAC,△EAC均为等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE⊂平面DEF,∴DE⊥AC【小问2详解】连接GA,GC,∵DG⊥平面ABC,而GA⊂平面ABC,GC⊂平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分线上,又EA=EC,∴E在AC的垂直平分线上,∴EG垂直平分AC,又F为AC的中点,∴E,F,G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市管道燃气特许经营合同纠纷案例分析
- 考向一 光的折射和全反射-2025年高考物理专题复习课件
- 工程合同之五:施工承包条款
- 短期租赁合同:活动房租赁
- 《项目开发流程》课件
- 家庭和谐合同:老公向老婆承诺的责任书
- 便捷采购合同样本
- 建房装修合同
- 医疗机构管理法律制度课件
- 摩托车旧车交易合同:版
- 计算机网络毕业论文3000字
- 热轧钢板和钢带尺寸允许偏差
- 农村公共基础知识
- BBC-商务英语会话
- SolidWorks培训课件完整版
- 2023年浙江首考读后续写真题讲评课件 高三英语二轮复习写作专项+
- 各期前列腺癌治疗的指南推荐
- 压力管理与情绪应对培训课件
- 提高预埋螺栓安装一次验收合格率五项qc2012地脚
- 现代厨房管理第一章第一节
- GB/T 6539-1997航空燃料与馏分燃料电导率测定法
评论
0/150
提交评论