2024届四川省遂宁二中数学高一上期末质量检测试题含解析_第1页
2024届四川省遂宁二中数学高一上期末质量检测试题含解析_第2页
2024届四川省遂宁二中数学高一上期末质量检测试题含解析_第3页
2024届四川省遂宁二中数学高一上期末质量检测试题含解析_第4页
2024届四川省遂宁二中数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省遂宁二中数学高一上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.2.命题:,,则该命题的否定为()A., B.,C., D.,3.已知集合,且,则的值可能为()A. B.C.0 D.14.圆与圆有()条公切线A.0 B.2C.3 D.45.设函数若任意给定的,都存在唯一的非零实数满足,则正实数的取值范围为()A. B.C. D.6.已知函数f(x)=ax2﹣x﹣8(a>0)在[5,20]上单调递增,则实数a的取值范围是()A.[,+∞) B.[5,+∞)C.(﹣∞,20] D.[5,20]7.已知,则的值是A. B.C. D.8.设f(x)为定义在R上的奇函数,当x>0时,f(x)=log3(1+x),则f(﹣2)=()A.﹣3 B.﹣1C.1 D.39.若是的一个内角,且,则的值为A. B.C. D.10.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或11.已知函数f(x)=有两不同的零点,则的取值范围是()A.(−∞,0) B.(0,+∞)C.(−1,0) D.(0,1)12.圆和圆的公切线有且仅有条A.1条 B.2条C.3条 D.4条二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.命题“,使关于的方程有实数解”的否定是_________.14.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.15.函数的最小正周期是__________16.若直线经过点,且与斜率为的直线垂直,则直线的方程为__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知向量,不共线,,(1)若,求k的值,并判断,是否同向;(2)若,与夹角为,当为何值时,18.已知函数(1)判断函数在上的单调性,并用定义法证明你的结论;(2)若,求函数的最大值和最小值.19.已知集合,.(1)若,求;(2)若,求的取值范围.20.已知角α的终边经过点,且为第二象限角(1)求、、的值;(2)若,求的值21.某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是水深数据:t(小时)03691215182124y(米)10.013.09.97.010013.010.17.010.0据上述数据描成的曲线如图所示,该曲线可近似的看成函数的图象(1)试根据数据表和曲线,求的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?22.设函数且是定义域为的奇函数,(1)若,求的取值范围;(2)若在上的最小值为,求的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可2、B【解析】根据特称命题的否定可得出结论.【详解】由特称命题的否定可知,原命题的否定为:,.故选:B.【点睛】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题.3、C【解析】化简集合得范围,结合判断四个选项即可【详解】集合,四个选项中,只有,故选:C【点睛】本题考查元素与集合的关系,属于基础题4、B【解析】由题意可知圆的圆心为,半径为,圆的圆心为半径为∵两圆的圆心距∴∴两圆相交,则共有2条公切线故选B5、A【解析】结合函数的图象及值域分析,当时,存在唯一的非零实数满足,然后利用一元二次不等式的性质即可得结论.【详解】解:因为,所以由函数的图象可知其值域为,又时,值域为;时,值域为,所以的值域为时有两个解,令,则,若存在唯一的非零实数满足,则当时,,与一一对应,要使也一一对应,则,,任意,即,因为,所以不等式等价于,即,因,所以,所以,又,所以正实数的取值范围为.故选:A.6、A【解析】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为,函数在[5,20]上单调递增,则区间在对称轴的右侧,从而可得答案.【详解】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为。函数在[5,20]上单调递增,则区间[5,20]在对称轴的右侧.则解得:.故选:A.【点睛】本题考查二次函数的单调性,二次函数的单调性与开口方向和对称轴有关,属于基础题.7、C【解析】由可得,化简则,从而可得结果.【详解】,,故选C.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角8、B【解析】因为函数f(x)为奇函数,所以.选B9、D【解析】是的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.10、A【解析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.11、A【解析】函数f(x)=有两不同的零点,可以转化为直线与函数的图象有两个不同的交点,构造不等式即可求得的取值范围.【详解】由题可知方程有两个不同的实数根,则直线与函数的图象有两个不同的交点,作出与的大致图象如下:不妨设,由图可知,,整理得,由基本不等式得,(当且仅当时等号成立)又,所以,解得,故选:A12、C【解析】分析:根据题意,求得两圆的圆心坐标和半径,根据圆心距和两圆的半径的关系,得到两圆相外切,即可得到答案.详解:由题意,圆,可得圆心坐标,半径为圆,可得圆心坐标,半径为,则,所以,所以圆与圆相外切,所以两圆有且仅有三条公切线,故选C.点睛:本题主要考查了圆的方程以及两圆的位置关系的判定,其中熟记两圆位置关系的判定方法是解答的关键,着重考查了推理与运算能力.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、,关于的方程无实数解【解析】直接利用特称命题的否定为全称命题求解即可.【详解】因为特称命题的否定为全称命题,否定特称命题是,既要否定结论,又要改变量词,所以命题“,使关于的方程有实数解”的否定为:“,关于的方程无实数解”.故答案为:,关于的方程无实数解14、②③④【解析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【点睛】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键15、【解析】根据正弦函数的最小正周期公式即可求解【详解】因为由正弦函数的最小正周期公式可得故答案为:16、【解析】与斜率为的直线垂直,故得到直线斜率为又因为直线经过点,由点斜式故写出直线方程,化简为一般式:故答案为.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)k=-1,反向;(2)k=1【解析】由题得由此能求出,,与反向.由,得,由数量积运算求出【详解】,,,,即又向量,不共线,,解得,,即,故与反向,与夹角为,

,又故,即解得故时,【点睛】本题考查向量平行、向量垂直的性质等基础知识,熟记共线定理,准确计算是关键,是基础题18、(1)减函数,证明见解析(2),【解析】(1)根据定义法证明函数单调性即可求解;(2)根据(1)中的单调性求解最值即可.【小问1详解】任取,,且则-因为,所以,所以,即,所以在区间上是减函数【小问2详解】因为函数在区间上是减函数,所以,.19、(1);(2).【解析】(1)先由得,再由并集的概念,即可得出结果;(2)根据,分别讨论,两种情况,即可得出结果.【详解】(1)若,则,又,所以;(2)因为,若,则,即;若,只需,解得,综上,取值范围为.【点睛】本题主要考查求集合的并集,考查由集合的包含关系求参数,属于常考题型.20、(1);;(2).【解析】(1)由三角函数的定义和为第二象限角,求得,即点,再利用三角函数的定义,即可求解;(2)利用三角函数的诱导公式和三角函数的基本关系式化简,代入即可求解.【详解】(1)由三角函数的定义可知,解得,因为为第二象限角,∴,即点,则,由三角函数的定义,可得.(2)由(1)知和,可得=.【点睛】本题主要考查了三角函数的定义,以及三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的定义,熟练应用三角函数的诱导公式,准确计算是解答的关键你,着重考查了推理与运算能力,属于基础题.21、(1);(2)至或至.【解析】(1)根据数据,可得,由,可求,从而可求函数的表达式;(2)由题意,水深,即,从而可求t的范围,即可得解;【详解】解:(1)根据数据,可得,,,,,函数的表达式为;(2)由题意,水深,即,,,,,1,,或,;所以,该船在至或至能安全进港22、(1);(2)2【解析】(1)由题意,得,由此可得,再代入解方程可得,由此可得函数在上为增函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论