版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市滨海新区七所重点中学高一数学第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.下列四个函数,最小正周期是的是()A. B.C. D.2.若不等式的解集为,那么不等式的解集为()A. B.或C. D.或3.定义域为R的函数,若关于的方程恰有5个不同的实数解,则=A.0 B.C. D.14.已知,,则a,b,c的大小关系为A. B.C. D.5.已知点,直线与线段相交,则直线的斜率的取值范围是()A.或 B.C. D.6.函数的单调递减区间为A. B.C. D.7.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.平行四边形中,若点满足,,设,则A. B.C. D.9.在直角梯形中,,,,分别为,的中点,以为圆心,为半径的圆交于,点在弧上运动(如图).若,其中,,则的取值范围是A. B.C. D.10.设,,,则、、的大小关系是()A. B.C. D.11.已知角α的始边与x轴的正半轴重合,顶点在坐标原点,角α终边上的一点P到原点的距离为,若α=,则点P的坐标为()A.(1,) B.(,1)C.() D.(1,1)12.若角的终边上一点,则的值为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若实数x,y满足,且,则的最小值为___________.14.已知,则的大小关系是___________________.(用“”连结)15.下列四个命题中:①若奇函数在上单调递减,则它在上单调递增②若偶函数在上单调递减,则它在上单调递增;③若函数为奇函数,那么函数的图象关于点中心对称;④若函数为偶函数,那么函数的图象关于直线轴对称;正确的命题的序号是___________.16.已知函数,对于任意都有,则的值为______________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知向量函数(1)若时,不等式恒成立,求实数的取值范围;(2)当时,讨论函数的零点情况.18.如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点(1)求证:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.19.已知函数部分图象如图所示.(1)当时,求的最值;(2)设,若关于的不等式恒成立,求实数的取值范围.20.已知函数(1)若函数,且为偶函数,求实数的值;(2)若,,且的值域为,求的取值范围21.已知两点,,两直线:,:求:(1)过点且与直线平行的直线方程;(2)过线段的中点以及直线与的交点的直线方程22.某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】依次计算周期即可.【详解】A选项:,错误;B选项:,错误;C选项:,正确;D选项:,错误.故选:C.2、C【解析】根据题意,直接求解即可.【详解】根据题意,由,得,因为不等式的解集为,所以由,知,解得,故不等式的解集为.故选:C.3、C【解析】本题考查学生的推理能力、数形结合思想、函数方程思想、分类讨论等知识如图,由函数的图象可知,若关于的方程恰有5个不同的实数解,当时,方程只有一根为2;当时,方程有两不等实根(),从而方程,共有四个根,且这四个根关于直线对称分布,故其和为8.从而,,选C【点评】本题需要学生具备扎实的基本功,难度较大4、D【解析】利用指数函数与对数函数的单调性即可得出【详解】解:,,又,故选D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题5、A【解析】,所以直线过定点,所以,,直线在到之间,所以或,故选A6、A【解析】根据所给的二次函数的二次项系数大于零,得到二次函数的图象是一个开口向上的抛物线,根据对称轴,考查二次函数的变化区间,得到结果【详解】解:函数的二次项的系数大于零,抛物线的开口向上,二次函数的对称轴是,函数的单调递减区间是故选A【点睛】本题考查二次函数的性质,属于基础题7、A【解析】根据两个命题中的取值范围,分析是否能得到pq和qp【详解】若x为自然数,则它必为整数,即p⇒q但x为整数不一定是自然数,如x=-2,即qp故p是q的充分不必要条件故选:A.8、B【解析】画出平行四边形,在上取点,使得,在上取点,使得,由图中几何关系可得到,即可求出的值,进而可以得到答案【详解】画出平行四边形,在上取点,使得,在上取点,使得,则,故,,则.【点睛】本题考查了平面向量的线性运算,考查了平面向量基本定理的应用,考查了平行四边形的性质,属于中档题9、D【解析】建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,),λ,μ用参数α进行表示,利用辅助角公式化简,即可得出结论【详解】解:建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,)⇒cosα=2λ﹣μ,sinα=λ⇒λ,∴6λ+μ=6()2(sinα+cosα)=2sin()∵,∴sin()∴2sin()∈[2,2],即6λ+μ的取值范围是[2,2]故选D【点睛】本题考查平面向量的坐标运算,考查学生的计算能力,正确利用坐标系是关键.属于中档题10、B【解析】利用指数函数、对数函数的单调性比较、、三个数与、的大小关系,由此可得出、、的大小关系.【详解】,即,,,因此,.故选:B.11、D【解析】设出P点坐标(x,y),利用正弦函数和余弦函数的定义结合的三角函数值求得x,y值得答案【详解】设点P的坐标为(x,y),则由三角函数的定义得即故点P的坐标为(1,1).故选D【点睛】本题考查任意角的三角函数的定义,是基础的计算题12、B【解析】由三角函数的定义即可得到结果.【详解】∵角的终边上一点,∴,∴,故选:B【点睛】本题考查三角函数的定义,考查诱导公式及特殊角的三角函数值,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、8【解析】由给定条件可得,再变形配凑借助均值不等式计算作答.【详解】由得:,又实数x,y满足,则,当且仅当,即时取“=”,由解得:,所以当时,取最小值8.故答案为:8【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.14、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.15、②③【解析】根据奇函数、偶函数的性质可判断①②,结合平移变换可判断③④.【详解】奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性,故①错误,②正确;因为函数为奇函数,图象关于原点对称,的图象可以由的图象向右平移1个单位长度得到,故的图象关于点对称,故③正确;函数的图象可以由函数的图象向左平移1个单位长度得到,因为为偶函数,图象关于y轴对称,所以的图象关于直线轴对称,故④错误.故答案为:②③16、【解析】由条件得到函数的对称性,从而得到结果【详解】∵f=f,∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.∴f=±2.【点睛】本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)见解析【解析】(1)由题意得,结合不等式恒成立,建立m的不等式组,从而得到实数的取值范围;(2))令得:即,对m分类讨论即可得到函数的零点情况.【详解】(1)由题意得,,当时,∴,又恒成立,则解得:(2)令得:得:,则.由图知:当或,即或时,0个零点;当或,即或时,1个零点;当或,即或时,2个零点;当,即时,3个零点.综上:或时,0个零点;或时,1个零点;或时,2个零点;时,3个零点.【点睛】本题考查三角函数的图像与性质的应用,三角不等式恒成立问题,函数的零点问题及三角函数的化简,属于中档题.18、(1)见解析(2)见解析【解析】解析:(1)在三棱台DEFABC中,BC=2EF,H为BC的中点,BH∥EF,BH=EF,四边形BHFE为平行四边形,有BE∥HF.BE∥平面FGH在△ABC中,G为AC的中点,H为BC的中点,GH∥AB.AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)连接HE,EGG,H分别为AC,BC的中点,GH∥AB.AB⊥BC,GH⊥BC.又H为BC的中点,EF∥HC,EF=HC,四边形EFCH是平行四边形,有CF∥HE.CF⊥BC,HE⊥BC.HE,GH⊂平面EGH,HE∩GH=H,BC⊥平面EGH.BC⊂平面BCD,平面BCD⊥平面EGH.19、(1),;(2)【解析】(1)根据正弦型图像的性质求出函数解析式,在根据求出函数最值;(2)求出g(x)解析式,令,利用二次函数根分布解题即可.【小问1详解】由图象可知,又.,又,.由,得.当,即时,;当,即时,.【小问2详解】,则.令,原不等式转化为对恒成立.令,则,解得综上,实数的取值范围为.20、(1)(2)【解析】(1)由题意得解析式,根据偶函数的定义,代入求解,即可得答案.(2)当时,可得解析式,根据值域为R,分别求和两种情况,结合一次、二次函数的性质,即可得答案.【小问1详解】由题可知∵是偶函数,∴,∴,即,,∴对一切恒成立,∴,即【小问2详解】当时,,当时,,其值域为,满足题意;当时,要使的值域为,则,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 16摩擦力(原卷版)-1
- 工程试验检测取样、送检指南大全
- 新高考6选3选科指导与生涯规划课件
- 山东省济南市济钢高中人教版生物选修三专题三第一节体内受精和早期胚胎发育测试
- 104三元一次方程组-2020-2021学年七年级数学下册课堂帮帮帮(苏科版)
- 湖北省孝感市重点高中教科研协作体2023-2024学年高二下学期4月期中联考生物试题
- 人教部编版八年级语文上册《国行公祭为佑世界和平》示范课教学课件
- 一年级下册生态生命安全教案
- 专利技术交易居间合同样本
- 2024个人消防安全责任书(32篇)
- 攻城掠地数据以及sdata文件修改教程
- 医疗废物转运箱消毒记录表
- 最新投标书密封条
- 看守所岗位职责
- 2019年青年英才培养计划项目申报表
- Sentaurus在ESD防护器件设计中的应用PPT课件
- 《抛物线焦点弦的性质探究》学案
- 人教版小学二年级数学上册全册教案【表格式】
- 佛山岭南新天地项目概况.
- 喷码机操作手册
- 会计学-上海汽车集团股份有限公司应收账款管理内部控制问题研究论文
评论
0/150
提交评论