版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市滨海新区大港第八中学数学高一上期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若关于的不等式恰有一个整数解,则实数的最小值是A. B.C. D.2.已知角的顶点与平面直角坐标系的原点重合,始边与x轴的正半轴重合,终边经过点,若,则的值为()A. B.C. D.3.已知偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.4.下列各角中,与终边相同的角为()A. B.160°C. D.360°5.下列运算中,正确的是()A. B.C. D.6.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.7.若函数,,则函数的图像经过怎样的变换可以得到函数的图像①先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.②先向左平移个单位,再将横坐标缩短到原来的倍,纵坐标保持不变.③将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.④将横坐标缩短到原来的倍,再向左平移个单位,纵坐标保持不变.A.①③ B.①④C.②③ D.②④8.化简:A.1 B.C. D.29.若则A. B.C. D.10.利用二分法求方程的近似解,可以取得一个区间A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)12.从2008年京津城际铁路通车运营开始,高铁在过去几年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色.下图是2009年至2016年高铁运营总里程数的折线图图(图中的数据均是每年12月31日的统计结果).根据上述信息下列结论中,所有正确结论的序号是____①2015年这一年,高铁运营里程数超过0.5万公里;②2013年到2016年高铁运营里程平均增长率大于2010到2013高铁运营里程平均增长率;③从2010年至2016年,新增高铁运营里程数最多的一年是2014年;④从2010年至2016年,新增高铁运营里程数逐年递增;13.已知,若,则实数的取值范围为__________14.若,则_____________.15.已知圆,圆,则两圆公切线的方程为__________16.在正三角形中,是上的点,,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面18.已知函数,(1)求在上的最小值;(2)记集合,,若,求的取值范围.19.直线过点,且倾斜角为.(1)求直线的方程;(2)求直线与坐标轴所围成的三角形面积.20.已知集合,(1)当时,求;(2)若,求a的取值范围;21.设函数是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若,且在上的最小值为2,求实数k的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】将看作整体,先求的取值范围,再根据不等式恰有一个整点和函数的图像,推断参数,的取值范围【详解】做出函数的图像如图实线部分所示,由,得,若,则满足不等式,不等式至少有两个整数解,不满足题意,故,所以,且整数解只能是4,当时,,所以,选择A【点睛】本题考查了分段函数的性质,一元二次不等式的解法,及整体代换思想,数形结合思想的应用,需要根据题设条件,将数学语言转化为图形表达,再转化为参数的取值范围2、C【解析】根据终边经过点,且,利用三角函数的定义求解.【详解】因为角终边经过点,且,所以,解得,故选:C3、B【解析】由题得函数在上单调递减,且,再根据函数的图象得到,解不等式即得解.【详解】因为偶函数在上单调递增,且,所以在上单调递减,且,因为,所以,所以.故选:B【点睛】本题主要考查函数的单调性和奇偶性的应用,意在考查学生对这些知识的理解掌握水平.4、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C5、C【解析】根据对数和指数的运算法则逐项计算即可.【详解】,故A错误;,故B错误;,故C正确;,故D错误.故选:C.6、C【解析】根据三角函数的周期变换和平移变换的原理即可得解.【详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.7、A【解析】依次判断四种变换方式的结果是否符合题意,选出正确变换【详解】函数,先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以①合题意;先向左平移个单位,再将横坐标缩短到原来的倍,函数变为,所以②不合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以③合题意;将横坐标缩短到原来的倍,再向左平移个单位,函数变为,所以④不合题意,故选择A【点睛】在进行伸缩变换时,横坐标变为原来的倍;向左或向右进行平移变换注意平移单位要加或减在“”上8、C【解析】根据二倍角公式以及两角差的余弦公式进行化简即可.【详解】原式.故选C.【点睛】这个题目考查了二倍角公式的应用,涉及两角差的余弦公式以及特殊角的三角函数值的应用属于基础题.9、A【解析】集合A三个实数0,1,2,而集合B表示的是大于等于1小于2的所有实数,所以两个集合的交集{1},故选A.考点:集合的运算.10、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,,∴在上有零点故选:D.【点睛】本题考查方程解与函数零点问题.掌握零点存在定理是解题关键二、填空题:本大题共6小题,每小题5分,共30分。11、(1);(2)5年;(3)17年.【解析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年12、②③【解析】根据数据折线图,分别进行判断即可.【详解】①看2014,2015年对应的纵坐标之差小于2-1.5=0.5,故①错误;②连线观察2013年到2016年两点连线斜率更大,故②正确;③2013年到2014年两点纵坐标之差最大,故③正确;④看相邻纵坐标之差是否逐年增加,显然不是,有增有减,故④错误;故答案为:②③.13、【解析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【点睛】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题14、【解析】平方得15、【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.16、【解析】根据正三角形的性质以及向量的数量积的定义式,结合向量的特点,可以确定,故答案为考点:平面向量基本定理,向量的数量积,正三角形的性质三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】分析:(1)可根据为等腰三角形得到,再根据平面平面可以得到平面,故.(2)因及是中点,从而有,再根据平面得到,从而平面,故平面平面.详解:(1)证明:因为,点是棱的中点,所以,平面.因为平面平面,平面平面,平面,所以平面,又因为平面,所以.(2)证明:因为,点是的中点,所以.由(1)可得,又因为,所以平面,又因为平面,所以平面平面点睛:线线垂直的证明,可归结为线面垂直,也可以转化到平面中的某两条直线的垂直问题,而面面垂直的证明,可转化为线面垂直问题,也转化为证明二面角为直二面角.18、(1)答案见解析(2)【解析】(1)按对称轴与区间的相对位置关系,分三种情况讨论求最小值;(2)分与解不等式,再分析的情况即可求解.【小问1详解】解:(1)由,抛物线开口向上,对称轴为,在上的最小值需考虑对称轴与区间的位置关系.(i)当时,;(ii)当时,;(ⅲ)当时,【小问2详解】(2)解不等式,即,可得:当时,不等式的解为;当时,不等式的解为.(i)当时,要使不等式的解集与有交集,由得:,此时对称轴为,∴只需,即,得.所以此时(ii)当时,要使不等式的解集与有交集,由得:,此时对称轴为,∴只需,即,得.所以此时无解.综上所述,的取值范围.19、(1);(2).【解析】(1)根据倾斜角得到斜率,再由点斜式,即可得出结果;(2)分别求出直线与坐标轴的交点坐标,进而可求出三角形面积.【详解】(1)∵倾斜角为,∴斜率,∴直线的方程为:,即;(2)由(1)得,令,则,即与轴交点为;令,则,以及与轴交点为;所以直线与坐标轴所围成的三角形面积为.20、(1),(2)【解析】(1)计算得到,,计算得到答案.(2)所以,讨论和两种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度食品行业员工工资支付合同范本3篇
- 2024智慧城市公共安全监控系统合同
- 2025年度智能厨房设备承包服务合同范本3篇
- 二零二五年餐厅合伙人联合推广宣传合同3篇
- 二零二五版单位职工食堂员工健康饮食指导承包协议3篇
- 2024高端装备制造业国际合作框架合同
- 二零二五年新材料企业股份代持与研发合作合同3篇
- 2025年度采矿权抵押融资法律服务协议书3篇
- 2025年度绿色食品配送中心员工劳务合同范本3篇
- 2024年长期战略联盟协议
- 2025年度土地经营权流转合同补充条款范本
- 南通市2025届高三第一次调研测试(一模)地理试卷(含答案 )
- Python试题库(附参考答案)
- 聚酯合成副反应介绍
- DB37-T 1342-2021平原水库工程设计规范
- 电除颤教学课件
- 广东省药品电子交易平台结算门户系统会员操作手册
- DB32T 3960-2020 抗水性自修复稳定土基层施工技术规范
- 大断面隧道设计技术基本原理
- 41某31层框架结构住宅预算书工程概算表
- 成都市国土资源局关于加强国有建设用地土地用途变更和
评论
0/150
提交评论