版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省遂宁市射洪县高一数学第一学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若在是减函数,则的最大值是A. B.C. D.2.若则一定有A. B.C. D.3.函数的图象大致是A. B.C. D.4.若函数在区间上单调递减,则实数满足的条件是A. B.C. D.5.设是周期为的奇函数,当时,,则A. B.C. D.6.已知扇形的面积为,扇形圆心角的弧度是,则扇形的周长为()A. B.C. D.7.对于空间两不同的直线,两不同的平面,有下列推理:(1),(2),(3)(4),(5)其中推理正确的序号为A.(1)(3)(4) B.(2)(3)(5)C.(4)(5) D.(2)(3)(4)(5)8.函数的部分图象如图所示,则A.B.C.D.9.已知直线与直线平行且与圆:相切,则直线的方程是A. B.或C. D.或10.已知函数部分图象如图所示,则A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知圆心角为2rad的扇形的周长为12,则该扇形的面积为____________.12.已知函数的图象过原点,且无限接近直线,但又不与该直线相交,则______13.已知非零向量、满足,,在方向上的投影为,则_______.14.函数y=的单调递增区间是____.15.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设为实数,函数.(1)若,求的取值范围;(2)讨论的单调性;(3)是否存在满足:在上值域为.若存在,求的取值范围.17.已知,函数(1)求的定义域;(2)当时,求不等式的解集18.已知函数(,且).(1)求函数的定义域;(2)是否存在实数a,使函数在区间上单调递减,并且最大值为1?若存在,求出a的值;若不存在,请说明理由.19.已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知且,,求证:方程在区间上有实数根.20.已知奇函数.(1)求值;(2)若函数的零点是大于的实数,试求的范围.21.已知函数,,.(1)若,求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】因为,所以由得因此,从而的最大值为,故选:A.2、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选3、A【解析】利用函数的奇偶性排除选项B、C项,然后利用特殊值判断,即可得到答案【详解】由题意,函数满足,所以函数为偶函数,排除B、C,又因为时,,此时,所以排除D,故选A【点睛】本题主要考查了函数的图象的识别问题,其中解答中熟练应用函数的奇偶性进行排除,以及利用特殊值进行合理判断是解答的关键,着重考查了分析问题解决问题的能力,属于基础题.4、A【解析】因为函数在区间上单调递减,所以时,恒成立,即,故选A.5、A【解析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【点睛】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.6、A【解析】根据扇形的面积公式和弧长的计算公式,求得弧长和半径,即可求得结果.【详解】设扇形的半径为,弧长为.由题意:,解得,所以扇形的周长为,故选:A.【点睛】本题考查扇形的弧长和面积公式,属基础题.7、C【解析】因为时,可以在平面内,所以(1)不正确;因为时,可以在平面内,所以(2)不正确;因为时可以在平面内,所以(3)不正确;根据线面垂直的性质定理可得,(4)正确;根据线面平行的性质及线面垂直的性质可得(5)正确,推理正确的序号为(4)(5),故选C.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定与性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.8、A【解析】由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.【考点】三角函数的图象与性质【名师点睛】根据图象求解析式问题的一般方法是:先根据函数图象的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值9、D【解析】圆的圆心为,半径为,因为直线,所以,设直线的方程为,由题意得或所以,直线的方程或10、C【解析】由图可以得到周期,然后利用周期公式求,再将特殊点代入即可求得的表达式,结合的范围即可确定的值.【详解】由图可知,,则,所以,则.将点代入得,即,解得,因为,所以.答案为C.【点睛】已知图像求函数解析式的问题:(1):一般由图像求出周期,然后利用公式求解.(2):一般根据图像的最大值或者最小值即可求得.(3):一般将已知点代入即可求得.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、9【解析】根据题意条件,先设出扇形的半径和弧长,并找到弧长与半径之间的关系,通过已知的扇形周长,可以求解出扇形的半径和弧长,然后再利用完成求解.【详解】设扇形的半径为,弧长为,由已知得,圆心角,则,因为扇形的周长为12,所以,所以,,则.故答案为:9.12、##0.75【解析】根据条件求出,,再代入即可求解.【详解】因为的图象过原点,所以,即.又因为的图象无限接近直线,但又不与该直线相交,所以,,所以,所以故答案为:13、【解析】利用向量数量积的几何意义得出,在等式两边平方可求出的值,然后利用平面向量数量积的运算律可计算出的值.【详解】,在方向上的投影为,,,则,可得,因此,.故答案:.【点睛】本题考查平面向量数量积计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题.14、【解析】设函数,再利用复合函数的单调性原理求解.【详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:15、【解析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为.故答案为:【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)在上单调递增,在上单调递减;(3)不存在.【解析】(1)直接求出,从而通过解不等式可求得的取值范围;(2)根据二次函数的单调性即可得出分段函数的单调性;(3)首先判断出,从而得到,即在上单调递增;然后把问题转化为在上有两个不等实数根的问题,从而判断出不存在的值.【详解】(1)∵,∴,即,所以,所以的取值范围为.(2)易知,对于,其对称轴为,开口向上,所以在上单调递增;对于,其对称轴为,开口向上,所以在上单调递减,综上知,在上单调递增,在上单调递减;(3)由(2)得,又在上的值域为,所以,又∵在上单调递增,∴,即在上有两个不等实数根,即在上有两个不等实数根,即在上有两个不等实数根,令,则其对称轴为,所以在上不可能存在两个不等的实根,∴不存在满足在上的值域为.17、(1)(2)【解析】(1)根据对数函数的真数大于零得到不等式组,解得即可求出函数的定义域;(2)当时得到、即可得到与,则原不等式即为,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可,需注意函数的定义域;【小问1详解】解:由题意得:,解得,因为,所以,故定义域为【小问2详解】解:因为,所以,所以,,因为,所以,即从而,解得.故不等式的解集为18、(1)(2)【解析】(1)根据对数型函数定义的求法简单计算即可.(2)利用复合函数的单调性的判断可知,然后依据题意可得进行计算即可.【小问1详解】由题意可得,即,因为,所以解得.故的定义域为.【小问2详解】假设存在实数,使函数在区间上单调递减,并且最大值为1.设函数,由,得,所以在区间上减函数且恒成立,因为在区间上单调递减,所以且,即.又因为在区间上的最大值为1,所以,整理得,解得.因为,所以,所以存在实数,使函数在区间上单调递减,并且最大值为119、⑴见解析;⑵;⑶见解析.【解析】(1)利用判别式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3)方程在区间上有实数根,即有零点,结合零点存在定理可以证明.试题解析:⑴,当时,,函数有一个零点;当时,,函数有两个零点⑵已知,则对于恒成立,即恒成立;所以,从而解得.⑶设,则,在区间上有实数根,即方程在区间上有实数根.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解20、(1)(2)【解析】(1)由奇函数的定义可得,即,化简即可得答案;(2)原问题等价于,从而有函数的值域即为的范围.小问1详解】解:因函数为奇函数,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 曹操《短歌行》课件2024升级:互动式学习体验
- 唾液腺疾病护理
- 《Lect半导体电子》课件
- 去大脑强直护理
- 危重病人急救护理常规
- 电工基础题目课程设计
- 《草房子》阅读教学教案
- 电子通信工程课程设计
- 电子行业 研究报告
- 电子秒表计时器课程设计
- 人教部编版六年级道德与法治上册第6课《人大代表为人民》精美课件
- 期末 (试题) -2024-2025学年外研版(三起)(2024)英语三年级上册
- 2023年12月英语四级真题及答案-第1套
- 药事管理学实践报告总结
- 物理化学实验B智慧树知到课后章节答案2023年下北京科技大学
- 自来水厂机电安装施工方案范本
- (完整版)体育理论部分练习题
- 电力行业企业安全生产岗位责任清单
- HXD3C型机车停放制动装置原理与操作
- 《化学毒物伤害院内洗消流程处置专家共识》(2021)要点汇编
- 土建劳务合同范本
评论
0/150
提交评论