版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届宁夏银川二十四中高一数学第一学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的偶函数满足当时,,则A. B.C. D.2.已知命题p:∃n∈N,2n>2021.那么A.∀n∈N,2n≤2021 B.∀n∈NC.∃n∈N,2n≤2021 D.∃n∈N3.若是第二象限角,是其终边上的一点,且,则()A. B.C. D.或4.由直线上的点向圆引切线,则切线长的最小值为A. B.C. D.5.将函数的图象上所有点的横坐标缩短为原来的倍(纵坐标不变),再向右平移个单位,得到函数的图象,则函数的图象的一条对称轴为A. B.C. D.6.下列各式正确是A. B.C. D.7.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且8.已知幂函数的图象过点(2,),则的值为()A. B.C. D.9.若函数的三个零点分别是,且,则()A. B.C. D.10.已知函数,,的零点分别,,,则,,的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具有性质的函数的个数为____________12.函数f(x),若f(a)=4,则a=_____13.直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为____________14.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:15.已知幂函数的图象过点,则此函数的解析式为______16.已知函数,则满足的的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在四棱锥中,底面是矩形,侧棱垂直于底面,分别是的中点.求证:(1)平面平面;(2)平面平面.18.已知函数为奇函数(1)求实数a的值;(2)若恒成立,求实数m的取值范围19.已知函数.(1)解不等式;(2)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.20.已知是小于9的正整数,,,求(1)(2)(3)21.如图,四棱锥P-ABCD的底面为平行四边形,M为PC中点(1)求证:BA∥平面PCD;(2)求证:AP∥平面MBD
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析:先根据得周期为2,由时单调性得单调性,再根据偶函数得单调性,最后根据单调性判断选项正误.详解:因为,所以周期为2,因为当时,单调递增,所以单调递增,因为,所以单调递减,因为,,所以,,,,选B.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行.2、A【解析】根据含有一个量词命题否定的定义,即可得答案.【详解】命题p:∃n∈N,2n>2021的否定¬p为:∀n∈N,故选:A3、C【解析】根据余弦函数的定义有,结合是第二象限角求解即可.【详解】由题设,,整理得,又是第二象限角,所以.故选:C4、B【解析】过圆心作直线的垂线,垂线与直线的交点向圆引切线,切线长最小【详解】圆心,半径,圆心到直线的距离则切线长的最小值【点睛】本题考查圆的切线长,考查数形结合思想,属于基础题5、C【解析】,所以,所以,所以是一条对称轴故选C6、D【解析】对于,,,故,故错误;根据对数函数的单调性,可知错误故选7、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..8、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题9、D【解析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【点睛】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理10、A【解析】判断出三个函数的单调性,可求出,,并判断,进而可得到答案【详解】因为在上递增,当时,,所以;因为在上递增,当时,恒成立,故的零点小于0,即;因为在上递增,当时,,故,故.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意,找出存在的点,如果找不出则需证明:不存在,,使得【详解】①因为函数是奇函数,可找关于原点对称的点,比如,存在;②假设存在不相等,,使得,即,得,矛盾,故不存在;③函数为偶函数,,令,,则,存在故答案为:【点睛】关键点点睛:证明存在性命题,只需找到满足条件的特殊值即可,反之需要证明不存在,一般考虑反证法,先假设存在,推出矛盾即可,属于中档题.12、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.13、x+3y-5=0或x=-1【解析】当直线l为x=﹣1时,满足条件,因此直线l方程可以为x=﹣1当直线l的斜率存在时,设直线l的方程为:y﹣2=k(x+1),化为:kx﹣y+k+2=0,则,化为:3k﹣1=±(3k+3),解得k=﹣∴直线l的方程为:y﹣2=﹣(x+1),化为:x+3y﹣5=0综上可得:直线l的方程为:x+3y﹣5=0或x=﹣1故答案为x+3y﹣5=0或x=﹣114、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.15、##【解析】设出幂函数,代入点即可求解.【详解】由题意,设,代入点得,解得,则.故答案为:.16、【解析】∵在x∈(0,+∞)上是减函数,f(1)=0,∴0<3-x<1,解得2<x<3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)因为是的中点,所以,由平面又可以得到,故平面得证.(2)因为三角形的中位线,所以,从而可以证明平面,同理平面,故而平面平面.解析:(1)∵底面,平面,∴,又矩形中,分别为中点,∴,,∴,∵,,平面,∴平面,∵平面,平面平面.(2)∵矩形中,分别为中点,∴,∵平面,平面,∴平面,∵是的中点,∴,∵平面,平面,∴平面,∵,,平面,∴平面平面.18、(1)(2)【解析】(1)利用奇函数定义求出实数a的值;(2)先求解定义域,然后参变分离后求出的取值范围,进而求出实数m的取值范围.【小问1详解】由题意得:,即,解得:,当时,,不合题意,舍去,所以,经检验符合题意;【小问2详解】由,解得:,由得:或,综上:不等式中,变形为,即恒成立,令,当时,,所以,实数m的取值范围为.19、(1)(1,3);(2).【解析】(1)设t=2x,利用f(x)>16﹣9×2x,转化不等式为二次不等式,求解即可;(2)利用函数的奇偶性以及函数恒成立,结合对勾函数的图象与性质求解函数的最值,推出结果【详解】解:(1)设t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,即t2﹣10t+16<0∴2<t<8,即2<2x<8,∴1<x<3∴不等式的解集为(1,3)(2)由题意得解得.2ag(x)+h(2x)≥0,即,对任意x∈[1,2]恒成立,又x∈[1,2]时,令,在上单调递增,当时,有最大值,所以.【点睛】本题考查函数与方程的综合应用,二次函数的性质,对勾函数的图像与性质以及函数恒成立的转化,考查计算能力20、(1)(2)(3)【解析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.【小问1详解】,,.【小问2详解】,,.【小问3详解】,,,.21、(1)见解析(2)见解析【解析】(1)根据平行四边形的性质可知,结合直线与平面平行的判定定理可得结论;(2)设,连接,由平行四边形的性质可知为中位线,从而得到,利用线面平行的判定定理,即可证出平面.【详解】证明(1)∵如图,四棱锥P-ABCD的底面为平行四边形,∴BC∥AD,又∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD;(2)设AC∩BD=H,连接MH,∵H为平行四边形ABCD对角线的交点,∴H为AC中点,又∵M为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 精准物联网苗病预警
- 2024年度技术咨询合同:咨询公司与委托方之间的技术咨询服务协议
- 二零二四年度人力资源公司与企业之间的员工外包服务合同
- 鲍鱼养殖基地方案
- 餐馆高压炉维修方案
- 二零二四年度企业供应链优化合同
- 2024年度全国范围内的汽车物流运输合同
- 高效能机械效能提升
- 一文了解居间合同费用标准
- 船员签合同范本
- 10黄伯荣、廖序东《现代汉语》增订6版课件-第4章 词汇 第二、三节
- 培养良好的团队氛围:提高团队凝聚力的技巧
- 髂动脉溃疡的健康宣教
- TS16949体系过程审核检查表
- KPI考核表-品质部
- CSCO-医疗行业肺癌免疫治疗持续用药规范化白皮书:拯救生命的另一半
- 预应力钢绞线张拉伸长量计算程序
- 劳动教育智慧树知到课后章节答案2023年下黑龙江建筑职业技术学院
- 国开电大《小学数学教学研究》形考任务2答案
- 谈心谈话记录100条范文(6篇)
- 头痛的国际分类(第三版)中文
评论
0/150
提交评论