安徽省阜阳市示范名校2023年高一上数学期末教学质量检测模拟试题含解析_第1页
安徽省阜阳市示范名校2023年高一上数学期末教学质量检测模拟试题含解析_第2页
安徽省阜阳市示范名校2023年高一上数学期末教学质量检测模拟试题含解析_第3页
安徽省阜阳市示范名校2023年高一上数学期末教学质量检测模拟试题含解析_第4页
安徽省阜阳市示范名校2023年高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳市示范名校2023年高一上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.过点且与直线垂直的直线方程为A. B.C. D.2.设全集,,,则如图阴影部分表示的集合为()A. B.C. D.3.角度化成弧度为()A. B.C. D.4.已知的定义域为,则函数的定义域为A. B.C. D.5.函数的部分图象大致是图中的()A.. B.C. D.6.已知集合,则()A. B.或C. D.或7.若向量满足:则A.2 B.C.1 D.8.将函数的图象向左平移个单位后得到的图象关于轴对称,则正数的最小值是()A. B.C. D.9.已知角的终边经过点,则()A. B.C. D.10.如图,一个水平放置的平面图形的直观图是边长为2的菱形,且,则原平面图形的周长为()A. B.C. D.8二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数的最大值为__________12.已知定义在上的奇函数,当时,,当时,________13.若函数(,且)在上是减函数,则实数的取值范围是__________.14.函数在______单调递增(填写一个满足条件的区间)15.的值为_______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)若函数,求函数零点.17.已知函数是奇函数,且;(1)判断函数在区间的单调性,并给予证明;(2)已知函数(且),已知在的最大值为2,求的值18.人类已进入大数据时代.目前数据量已经从级别越升到,,乃至级别.某数据公司根据以往数据,整理得到如下表格:时间2008年2009年2010年2011年2012年间隔年份(单位:年)01234全球数据量(单位:)0.50.751.1251.68752.53125根据上述数据信息,经分析后发现函数模型能较好地描述2008年全球产生的数据量(单位:)与间隔年份(单位:年)的关系.(1)求函数的解析式;(2)请估计2021年全球产生的数据量是2011年的多少倍(结果保留3位小数)?参考数据:,,,,,.19.已知圆,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求线段PM长度.(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段长度的最小值20.计算下列各式:(1);(2)21.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】所求直线的斜率为,故所求直线的方程为,整理得,选D.2、D【解析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【详解】,.图中阴影部分所表示的集合为且.故选:D.【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.3、A【解析】根据题意,结合,即可求解.【详解】根据题意,.故选:A.4、B【解析】因为函数的定义域为,故函数有意义只需即可,解得,选B考点:1、函数的定义域的概念;2、复合函数求定义域5、D【解析】根据函数的奇偶性及函数值得符号即可得到结果.【详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【点睛】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题6、C【解析】直接利用补集和交集的定义求解即可.【详解】由集合,可得:或,故选:C.【点睛】关键点点睛:本该考查了集合的运算,解决该题的关键是掌握补集和交集的定义..7、B【解析】由题意易知:即,,即.故选B.考点:向量的数量积的应用.8、A【解析】图象关于轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将的图象向左平移个单位后得到,此时图象关于轴对称,则,则,当时,取得最小值故选:A.9、C【解析】根据任意角的三角函数的定义,求出,再利用二倍角公式计算可得.【详解】解:因为角的终边经过点,所以,所以故选:C10、B【解析】利用斜二测画法还原直观图即得.【详解】由题可知,∴,还原直观图可得原平面图形,如图,则,∴,∴原平面图形的周长为.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用二倍角余弦公式,把问题转化为关于的二次函数的最值问题.【详解】,又,∴函数的最大值为.故答案为:.12、【解析】设,则,代入解析式得;再由定义在上的奇函数,即可求得答案.【详解】不妨设,则,所以,又因为定义在上的奇函数,所以,所以,即.故答案为:.13、【解析】根据分段函数的单调性,列出式子,进行求解即可.【详解】由题可知:函数在上是减函数所以,即故答案为:14、(答案不唯一)【解析】先求出函数的定义域,再换元,然后利用复合函数单调性的求法求解详解】由,得,解得或,所以函数的定义域为,令,则,因为在上单调递减,在上单调递增,而在定义域内单调递增,所以在上单调递增,故答案为:(答案不唯一)15、【解析】直接按照诱导公式转化计算即可【详解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°=故答案为:【点睛】本题考查诱导公式的应用:求值.一般采用“大角化小角,负角化正角”的思路进行转化三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)为奇函数(3)【解析】(1)要使函数有意义,必须满足,从而得到定义域;(2)利用奇偶性定义判断奇偶性;(3)函数的零点即方程的根.即的根,又为奇函数,所以.易证:在定义域上为增函数,∴由得,从而解得函数的零点.试题解析:(1)要使函数有意义,必须满足,∴,因此,的定义域为.(2)函数为奇函数.∵的定义域为,对内的任意有:,所以,为奇函数.(3)函数的零点即方程的根.即的根,又为奇函数,所以.任取,且,∵,∴,∴∵且,∴,∴,∴,∴,即,∴在定义域上为增函数,∴由得解得或,验证当时,不符合题意,当时,符合题意,所以函数的零点为.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.17、(1)函数在区间是递增函数;证明见解析;(2)或【解析】(1)由奇函数定义建立方程组可求出,再用定义法证明单调性即可;(2)根据复合函数的单调性,分类讨论的单调性,结合函数的单调性研究最值即可求解【详解】(1)∵是奇函数,∴,又,且,所以,,经检验,满足题意得,所以函数在区间是递增函数证明如下:且,所以有:由,得,,又,故,所以,即,所以函数在区间是递增函数(2)令,由(1)可得在区间递增函数,①当时,是减函数,故当取得最小值时,(且)取得最大值2,在区间的最小值为,故的最大值是,∴②当时,是增函数,故当取得最大值时,(且)取得最大值2,在区间的最大值为,故的最大值是,∴或18、(1)(2)【解析】(1)根据题意选取点代入函数解析式,取出参数即可.(2)先求出2021年全球产生的数据量,然后结合条件可得答案.【小问1详解】由题意点在函数模型的图像上则,解得所以【小问2详解】2021年时,间隔年份为13,则2021年全球产生的数据量是2021年全球产生的数据量是2011年的倍数为:19、(1)8(2)(3)【解析】(1)根据圆中切线长的性质得到;(2)设,经过A,P,M三点的圆N以MP为直径,圆N的方程为化简求值即可;(3)(Ⅲ)求出点M到直线AB的距离,利用勾股定理,即可求线段AB长度的最小值.解析:(1)由题意知,圆M的半径r=4,圆心M(0,6),设PA是圆的一条切线,(2)设,经过A,P,M三点的圆N以MP为直径,圆心,半径为得圆N的方程为即,有由,解得或圆过定点(3)圆N的方程,即①圆即②②-①得:圆M与圆N相交弦AB所在直线方程为:圆心M(0,6)到直线AB的距离弦长当时,线段AB长度有最小值.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;圆的问题经常应用的性质有垂径定理的应用,切线长定理的应用.20、(1)-37(2)0【解析】(1)利用对数的性质以及有理数指数幂的性质,算出结果;(2)利用诱导公式算出三角函数值试题解析:(1)原式;(2),,所以原式21、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论