安徽省亳州市第二中学2023年高一数学第一学期期末检测模拟试题含解析_第1页
安徽省亳州市第二中学2023年高一数学第一学期期末检测模拟试题含解析_第2页
安徽省亳州市第二中学2023年高一数学第一学期期末检测模拟试题含解析_第3页
安徽省亳州市第二中学2023年高一数学第一学期期末检测模拟试题含解析_第4页
安徽省亳州市第二中学2023年高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省亳州市第二中学2023年高一数学第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.四棱柱中,,,则与所成角为A. B.C. D.2.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天3.,,,则的大小关系为()A. B.C. D.4.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是A.①② B.②③C.③④ D.②④5.若,则()A. B.C. D.6.函数是上的偶函数,则的值是A. B.C. D.7.给定函数:①;②;③;④,其中在区间上单调递减函数序号是()A.①② B.②③C.③④ D.①④8.若a2+b2=2c2(c≠0),则直线ax+by+c=0被圆x2+y2=1所截得的弦长为A. B.1C. D.9.若两平行直线与之间的距离是,则A.0 B.1C.-2 D.-110.如图,是全集,是子集,则阴影部分表示的集合是()A. B.C. D.11.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.2412.定义运算:,则函数的图像是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______14.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦矢+).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于9m的弧田.按照上述经验公式计算所得弧田的面积是________.15.若命题p是命题“”的充分不必要条件,则p可以是___________.(写出满足题意的一个即可)16.已知函数的部分图象如图所示,则___________三、解答题(本大题共6小题,共70分)17.已知函数(,且).(1)求函数的定义域;(2)是否存在实数a,使函数在区间上单调递减,并且最大值为1?若存在,求出a的值;若不存在,请说明理由.18.直线l经过两直线l1:2x-y+4=0与l2:x-y+5=0的交点,且与直线x-2y-6=0垂直.(1)求直线l的方程.(2)若点P(a,1)到直线l的距离为,求实数a的值.19.已知函数()用五点法作出在一个周期上的简图.(按答题卡上所给位置作答)()求在时的值域20.求值:(1);(2)21.第四届中国国际进口博览会于2021年11月5日至10日在上海举行.本届进博会共有58个国家和3个国际组织参加国家展(国家展今年首次线上举办),来自127个国家和地区的近3000家参展商亮相企业展.更多新产品、新技术、新服务“全球首发,中国首展”专(业)精(品)尖(端)特(色)产品精华荟萃,某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x千台空调,需另投入资金R万元,且经测算,当生产10千台空调需另投入的资金R=4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完(1)求2022年企业年利润W(万元)关于年产量x(千台)的函数关系式;(2)2022年产量为多少(千台)时,企业所获年利润最大?最大年利润多少?(注:利润=销售额-成本)22.计算:(1)94(2)lg5+lg2⋅

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】四棱柱中,因为,所以,所以是所成角,设,则,+=,所以,所以+=,所以,所以选择D2、B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.3、D【解析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.4、D【解析】图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D5、A【解析】令,则,所以,由诱导公式可得结果.【详解】令,则,且,所以.故选:A.6、C【解析】分析:由奇偶性可得,化为,从而可得结果.详解:∵是上的偶函数,则,即,即成立,∴,又∵,∴.故选C点睛:本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.7、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.8、D【解析】因为,所以设弦长为,则,即.考点:本小题主要考查直线与圆的位置关系——相交.9、C【解析】∵l1∥l2,∴n=-4,l2方程可化为为x+2y-3=0.又由d=,解得m=2或-8(舍去),∴m+n=-2.点睛:两平行线间距离公式是对两平行线方程分别为,,则距离为,要注意两直线方程中的系数要分别相等,否则不好应用此公式求距离10、C【解析】利用阴影部分所属的集合写出阴影部分所表示的集合【详解】解:由图知,阴影部分在集合中,在集合中,但不在集合中,故阴影部分所表示的集合是.故选:C.11、A【解析】先阅读题意,再结合指数运算即可得解.【详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.12、A【解析】先求解析式,再判断即可详解】由题意故选:A【点睛】本题考查函数图像的识别,考查指数函数性质,是基础题二、填空题(本大题共4小题,共20分)13、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④14、.【解析】如下图所示,在中,求出半径,即可求出结论.【详解】设弧田的圆心为,弦为,为中点,连交弧为,则,所以矢长为,在中,,,所以,,所以弧田的面积为.故答案为:.【点睛】本题以数学文化为背景,考查直角三角形的边角关系,认真审题是解题的关键,属于基础题.15、,(答案不唯一)【解析】由充分条件和必要条件的定义求解即可【详解】因为当时,一定成立,而当时,可能,可能,所以是的充分不必要条件,故答案为:(答案不唯一)16、【解析】由图象可得最小正周期的值,进而可得,又函数图象过点,利用即可求解.【详解】解:由图可知,因为,所以,解得,因为函数的图象过点,所以,又,所以,故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)根据对数型函数定义的求法简单计算即可.(2)利用复合函数的单调性的判断可知,然后依据题意可得进行计算即可.【小问1详解】由题意可得,即,因为,所以解得.故的定义域为.【小问2详解】假设存在实数,使函数在区间上单调递减,并且最大值为1.设函数,由,得,所以在区间上减函数且恒成立,因为在区间上单调递减,所以且,即.又因为在区间上的最大值为1,所以,整理得,解得.因为,所以,所以存在实数,使函数在区间上单调递减,并且最大值为118、(1);(2)或【解析】(1)解方程组可得直线的交点为(1,6),然后根据垂直可得直线l的斜率,由点斜式可得l的方程;(2)有点到直线的距离公式可得,解得a=1或a=6,即为所求试题解析:(1)由得所以直线l1与l2的交点为(1,6),又直线l垂直于直线x-2y-6=0所以直线l的斜率为k=-2,故直线l的方程为y-6=-2(x-1),即2x+y-8=0(2)因为点P(a,1)到直线l的距离等于,所以=,解得a=1或a=6.所以实数a的值为1或6.19、(1)见解析;(2)值域为.【解析】分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用,,,,描点作图即可;()当时,,可得,,从而可得结果.详解:(),,,,五点作图法的五点:,,,,()当时,,∴,此时,,即,,此时,,即,∴在时的值域为点睛:以三角恒等变换为手段,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20、(1)(2)【解析】(1)利用指数幂计算公式化简求值;(2)利用对数计算公式换件求值.【小问1详解】【小问2详解】.21、(1)(2)当2022年产量为100千台时,企业的利润最大,最大利润为8990万元【解析】(1)分段讨论即可;(2)分段求最值,再比较即可【小问1详解】由题意知,当x=10时,所以a=300当时,当时,所以【小问2详解】当0<x<40时,,所以,当x=30时,W有最大值,最大值为8740当时,当且仅当即x=100时,W有最大值,最大值为8990因为8740<8990,所以当2022年产量为10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论