版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省吉林市高一数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知向量,且,则的值为()A.1 B.2C. D.32.若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的是()①logax2=2logax;②logax2=2loga|x|;③loga(xy)=logax+logay;④loga(xy)=loga|x|+loga|y|.A.②④ B.①③C.①④ D.②③3.已知函数是定义在R上的偶函数,若对于任意不等实数,,,不等式恒成立,则不等式的解集为()A. B.C. D.4.设扇形的周长为,面积为,则扇形的圆心角的弧度数是()A.1 B.2C.3 D.45.的值是A. B.C. D.6.在一次数学实验中,某同学运用图形计算器采集到如下一组数据:x01.002.03.0y0.240.5112.023.988.02在四个函数模型(a,b为待定系数)中,最能反映,y函数关系的是().A. B.C. D.7.已知,则的周期为()A. B.C.1 D.28.如图,在平面四边形ABCD,,,,.若点E为边上的动点,则的取值范围为()A. B.C. D.9.在中,是的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.已知命题p:∃n∈N,2n>2021.那么A.∀n∈N,2n≤2021 B.∀n∈NC.∃n∈N,2n≤2021 D.∃n∈N二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若函数关于对称,则常数的最大负值为________12.函数的值域是____.13.求方程在区间内的实数根,用“二分法”确定的下一个有根的区间是____________.14.函数的定义域是___________,若在定义域上是单调递增函数,则实数的取值范围是___________15.若,则_____________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知,(1)求和的值(2)求以及的值17.已知函数(Ⅰ)求函数的最小正周期(Ⅱ)求函数在上的最大值与最小值18.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格(元)与时间(天)的函数关系是,日销售量(件)与时间(天)的函数关系是.(1)设该商品的日销售额为y元,请写出y与t的函数关系式;(商品的日销售额=该商品每件的销售价格×日销售量)(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大?19.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.20.已知是定义在上的偶函数,当时,(1)求;(2)求的解析式;(3)若,求实数a的取值范围21.已知全集,集合,集合.条件①;②是的充分条件;③,使得(1)若,求;(2)若集合A,B满足条件__________(三个条件任选一个作答),求实数m的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】由,转化为,结合数量积的坐标运算得出,然后将所求代数式化为,并在分子分母上同时除以,利用弦化切的思想求解【详解】由题意可得,即∴,故选A【点睛】本题考查垂直向量的坐标表示以及同角三角函数的基本关系,考查弦化切思想的应用,一般而言,弦化切思想应用于以下两方面:(1)弦的分式齐次式:当分式是关于角弦的次分式齐次式,分子分母同时除以,可以将分式由弦化为切;(2)弦的二次整式或二倍角的一次整式:先化为角的二次整式,然后除以化为弦的二次分式齐次式,并在分子分母中同时除以可以实现弦化切2、B【解析】对于①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②④根据运算性质可得均正确.【详解】∵xy>0,∴①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②logax2=2loga|x|,④loga(xy)=loga|x|+loga|y|,根据对数运算性质得两个都正确;故选:B.3、C【解析】由条件对于任意不等实数,,不等式恒成立可得函数在上为减函数,利用函数性质化简不等式求其解.【详解】∵函数是定义在R上的偶函数,∴,∴不等式可化为∵对于任意不等实数,,不等式恒成立,∴函数在上为减函数,又,∴,∴,∴不等式的解集为故选:C.4、B【解析】根据扇形的周长为,面积为,得到,解得l,r,代入公式求解.【详解】因为扇形的周长为,面积为,所以,解得,所以,所以扇形的圆心角的弧度数是2故选:B5、B【解析】利用诱导公式求解.【详解】解:由诱导公式得,故选:B.6、B【解析】由题中表格数据画出散点图,由图观察实验室指数型函数图象【详解】由题中表格数据画出散点图,如图所示,观察图象,类似于指数函数对于A,是一次函数,图象是一条直线,所以A错误,对于B,是指数型函数,所以B正确,对于C,是对数型函数,由于表中的取到了负数,所以C错误,对于D,是反比例型函数,图象是双曲线,所以D错误,故选:B7、A【解析】利用两角和的正弦公式化简函数,代入周期计算公式即可求得周期.【详解】,周期为:故选:A【点睛】本题考查两角和的正弦公式,三角函数的最小正周期,属于基础题.8、A【解析】由已知条件可得,设,则,由,展开后,利用二次函数性质求解即可.【详解】∵,因为,,,所以,连接,因为,所以≌,所以,所以,则,设,则,∴,,,,所以,因为,所以.故选:A9、B【解析】根据不等式的性质,利用充分条件和必要条件的定义进行判定,即可求解,得到答案.【详解】在中,若,可得,满足,即必要性成立;反之不一定成立,所以在中,是的必要不充分条件.故选B.【点睛】本题主要考查了充分条件和必要条件的判定,其中解答中熟练应用三角函数的性质是解答的关键,属于基础题.10、A【解析】根据含有一个量词命题否定的定义,即可得答案.【详解】命题p:∃n∈N,2n>2021的否定¬p为:∀n∈N,故选:A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据函数的对称性,利用,建立方程进行求解即可【详解】若关于对称,则,即,即,则,则,,当时,,故答案为:12、##【解析】由余弦函数的有界性求解即可【详解】因为,所以,所以,故函数的值域为,故答案为:13、【解析】根据二分法的步骤可求得结果.【详解】令,因为,,,所以下一个有根的区间是.故答案为:14、①.##②.【解析】根据对数函数的定义域求出x的取值范围即可;结合对数复合型函数的单调性与一次函数的单调性即可得出结果.【详解】由题意知,,得,即函数的定义域为;又函数在定义域上单调增函数,而函数在上单调递减,所以函数为减函数,故.故答案为:;15、【解析】平方得三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),(2),【解析】(1)根据三角函数的基本关系式,准确运算,即可求解;(2)利用两角差的正弦公式和两角和的正切公式,准确运算,即可求解.【小问1详解】因为,根据三角函数的基本关系式,可得,又因为,所以,且.【小问2详解】由,和根据两角差的正弦公式,可得,再结合两角和的正切公式,可得17、(1)(2)最大值1,最小值0【解析】(1)先利用二倍角正余弦公式以及配角公式将函数化为基本三角函数,再根据正弦函数性质求最小正周期.(2)先根据,得正弦函数取值范围,再求函数最值试题解析:(Ⅰ)∴的最小正周期(Ⅱ)∵,∴,∴,∴,即:当且仅当时,取最小值,当且仅当,即时,取最大值,点睛:三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征18、(1);(2)日销售金额的最大值为900元,11月10日日销售金额最大【解析】(1)由日销售金额=每件的销售价格×日销售量可得;(2)利用二次函数的图像与性质可得结果.【详解】(1)设日销售额为元,则,所以即:(2)当时,,;当时,,故所求日销售金额的最大值为元,11月10日日销售金额最大.【点睛】本题主要考查了利用数学知识解决实际问题的能力,解题的关键是要把实际问题转化为数学问题,利用数学中二次函数的知识进行求解函数的最值.19、(1);(2);(3).【解析】(1)由函数为奇函数可得,即,整理得,可得,解得,经验证不合题意.(2)根据单调性的定义可证明函数在区间上为增函数,从而可得在区间上的值域为,故,从而可得所有上界构成的集合为.(3)将问题转化为在上恒成立,整理得在上恒成立,通过判断函数的单调性求得即可得到结果试题解析:(1)∵函数是奇函数,∴,即,∴,∴,解得,当时,,不合题意,舍去∴.(2)由(1)得,设,令,且,∵;∴在上是减函数,∴在上是单调递增函数,∴在区间上是单调递增,∴,即,∴在区间上的值域为,∴,故函数在区间上的所有上界构成的集合为.(3)由题意知,上恒成立,∴,∴,因此在上恒成立,∴设,,,由知,设,则,,∴在上单调递减,在上单调递增,∴在上的最大值为,在上的最小值为,∴∴的取值范围.点睛:(1)本题属于新概念问题,解题的关键是要紧紧围绕所给出的新定义,然后将所给问题转化为函数的最值(或值域)问题处理(2)求函数的最值(或值域)时,利用单调性是常用的方法之一,为此需要先根据定义判断出函数的单调性,再结合所给的定义域求出最值(或值域)20、(1)2(2)(3)【解析】(1)根据偶函数这一性质将问题转化为求的值,再代入计算即可;(2)设,根据偶函数这一性质,求出另一部分的解析即可;(3)由(2)可知函数的单调性,结合单调性解不等式即可.【小问1详解】因为是偶函数,所以小问2详解】设,则,因为是定义在上的偶函数,所以当时,,所以(也可表示为【小问3详解】由及是偶函数得,由得,在上单调递增,所以由得,,解得,即a的取值范围是.21、(1)(2)或【解析】(1)可将带入集合中,得到集合的解集,即可求解出答案;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版无息借款协议标准格式版B版
- 医疗信息科新技术应用案例
- 2024年生态环保项目投资合同
- 农村住宅设计咨询合同
- 2025房地产居间合同模板
- 项目控股框架协议
- 2024版装饰工程居间合同范本
- 软件园食堂租赁合同
- 高铁站周边开发土地预审管理
- 湘潭建筑抗震支架施工方案
- 通力电梯KCE电气系统学习指南
- 风电场岗位任职资格考试题库大全-下(填空题2-2)
- 九年级数学特长生选拔考试试题
- 幼儿园交通安全宣传课件PPT
- 门窗施工组织设计与方案
- 健身健美(课堂PPT)
- (完整版)财务管理学课后习题答案-人大版
- 锚索试验总结(共11页)
- 移动脚手架安全交底
- 人教版“课标”教材《统计与概率》教学内容、具体目标和要求
- 矩形钢板水箱的设计与计算
评论
0/150
提交评论