版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省广州市增城高级中学高一上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数若是奇函数,则()A. B.C. D.12.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或3.下列函数中哪个是幂函数()A. B.C. D.4.“是钝角”是“是第二象限角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知指数函数在上单调递增,则的值为()A.3 B.2C. D.6.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}7.半径为的半圆卷成一个圆锥,则它的体积为()A. B.C. D.8.如果关于x的不等式x2<ax+b的解集是{x|-1<x<3},那么ba等于()A.-9 B.9C.- D.-89.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.10.设集合,,则集合A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.12.某次学科测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.则参加测试的总人数为______,分数在之间的人数为______.13.如图是函数在一个周期内的图象,则其解析式是________14.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________.15.已知函数,的值域为,则实数的取值范围为__________.16.当时,使成立的x的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值;(2)若,求的值.18.(1)一个半径为的扇形,若它的周长等于,那么扇形的圆心角是多少弧度?扇形面积是多少?(2)角的终边经过点P(,4)且cos=,则的值19.为迎接党的“十九大”胜利召开与响应国家交给的“提速降费”任务,某市移动公司欲提供新的资费套餐(资费包含手机月租费、手机拨打电话费与家庭宽带上网费).其中一组套餐变更如下:原方案资费手机月租费手机拨打电话家庭宽带上网费(50M)18元/月0.2元/分钟50元/月新方案资费手机月租费手机拨打电话家庭宽带上网费(50M)58元/月前100分钟免费,超过部分元/分钟(>0.2)免费(1)客户甲(只有一个手机号和一个家庭宽带上网号)欲从原方案改成新方案,设其每月手机通话时间为分钟(),费用原方案每月资费-新方案每月资费,写出关于函数关系式;(2)经过统计,移动公司发现,选这组套餐的客户平均月通话时间分钟,为能起到降费作用,求的取值范围20.已知函数(1)画出的图象,并根据图象写出的递增区间和递减区间;(2)当时,求函数的最小值,并求y取最小值时x的值.(结果保留根号)21.甲、乙两城相距100km,某天然气公司计划在两地之间建天然气站P给甲、乙两城供气,设P站距甲城.xkm,为保证城市安全,天然气站距两城市的距离均不得少于10km.已知建设费用y(万元)与甲、乙两地的供气距离(km)的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P距甲城的距离为40km时,建设费用为1300万元.(1)把建设费用y(万元)表示成P站与甲城的距离x(km)的函数,并求定义域;(2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先求出的值,再根据奇函数的性质,可得到的值,最后代入,可得到答案.【详解】∵奇函数故选:A【点睛】本题主要考查利用函数的奇偶性求值的问题,属于基础题.2、A【解析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.3、A【解析】直接利用幂函数的定义判断即可【详解】解:幂函数是,,显然,是幂函数.,,都不满足幂函数的定义,所以A正确故选:A【点睛】本题考查了幂函数的概念,属基础题.4、A【解析】根据钝角和第二象限角的定义,结合充分性、必要性的定义进行判断即可.【详解】因为是钝角,所以,因此是第二象限角,当是第二象限角时,例如是第二象限角,但是显然不成立,所以“是钝角”是“是第二象限角”的充分不必要条件,故选:A5、B【解析】令系数为,解出的值,又函数在上单调递增,可得答案【详解】解得,又函数在上单调递增,则,故选:B6、B【解析】分析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.7、A【解析】根据题意可得圆锥母线长为,底面圆的半径为,求出圆锥高即可求出体积.【详解】半径为半圆卷成一个圆锥,可得圆锥母线长为,底面圆周长为,所以底面圆的半径为,圆锥的高为,所以圆锥的体积为.故选:A.8、B【解析】根据一元二次不等式的解集,利用根与系致的关系求出的值
,再计的值.【详解】由不等式的解集是,所以是方程的两个实数根.则,所以所以故选:B9、D【解析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,10、D【解析】并集由两个集合所有元素组成,排除重复的元素,故选.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.12、①.25②.4【解析】根据条件所给的茎叶图看出分数在[50,60)之间的频数,由频率分布直方图看出分数在[50,60)之间的频率和[90,100)之间的频率一样,继而得到参加测试的总人数及分数在[80,90)之间的人数.【详解】成绩在[50,60)内的频数为2,由频率分布直方图可以看出,成绩在[90,100]内同样有2人,由,解得n=25,成绩在[80,90)之间的人数为25-(2+7+10+2)=4人,所以参加测试人数n=25,分数在[80,90)的人数为4人.故答案为:25;4【点睛】本题主要考查茎叶图、频率分布直方图,样本的频率分布估计总体的分布,属于容易题.13、【解析】由图可得;,则;由五点作图法可得,解得,所以其解析式为考点:1.三角函数的图像;2.五点作图法;14、【解析】首先利用图像作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解.【详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图:由正四面体的性质可知,为底面正三角形的中心,从而,,∵为的中点,为正三角形,所以,,所以为正四面体相邻两个面所成角∵,∴易得,,∵平面,平面,∴,故.故答案为:.15、##【解析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:16、【解析】根据正切函数的图象,进行求解即可【详解】由正切函数的图象知,当时,若,则,即实数x的取值范围是,故答案为【点睛】本题主要考查正切函数的应用,利用正切函数的性质结合函数的单调性是解决本题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据三角函数的基本关系式,化简得,即可求解;(2)由(1)知,根据三角函数诱导公式,化简得到原式,结合三角函数的基本关系式,即可求解.【详解】(1)根据三角函数的基本关系式,可得,解得.(2)由(1)知,又由.因为,且,所以,可得,所以18、(1),(2)【解析】(1)设弧长为,所对圆心角为,则=,即=因为所以的弧度数是,从而(2)角的终边经过点P(,4),所以,所以.所以原式=19、(1);(2).【解析】(1)关键是求出原资费和新资费,原资费为68+0.2x,新资费是分段函数,x≤100时,为58,当x>100时,为,相减可得结论;(2)只要(1)中的y>0,则说明节省资费,列出不等式可得,注意当100<x≤400时,函数y为减函数,因此在x=400时取最小值,由此最小值>0,可解得范围试题解析:(1)i)当,ii)当,综上所述(未写扣一分)(2)由题意,恒成立,显然,当,,当,因为,为减函数所以当时,解得从而20、(1)作图见解析,递增区间为,递减区间为;(2)最小值为,y取最小值时.【解析】(1)由即得图象,由图象即得单调区间;(2)利用基本不等式即得.【小问1详解】由函数,图象如图:递增区间为,递减区间为;(注:写成也可以)【小问2详解】当时,,等号当且仅当时成立,∴的最小值为,y取最小值时21、(1);(2)天然气供气站建在距甲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年-2024年公司项目部负责人安全教育培训试题附答案【黄金题型】
- 立秋文化在新媒体的传播
- 《材料工程原理绪论》课件
- 《监督培训材料》课件
- 激光打标机打标软件与PLC通信稳定性的研究
- 部编版七年级历史下册期末复习专题课件2024版
- 云安全隐私保护机制-洞察分析
- 营养产业可持续发展-洞察分析
- 外观模式可维护性-洞察分析
- 稀有金属国际市场动态-洞察分析
- 【8地星球期末】安徽省合肥市包河区智育联盟校2023-2024学年八年级上学期期末地理试题(含解析)
- 2024-2025学年冀人版科学四年级上册期末测试卷(含答案)
- 【8物(科)期末】合肥市庐阳区2023-2024学年八年级上学期期末质量检测物理试卷
- 国家安全知识教育
- 2024-2030年中国停车场建设行业发展趋势投资策略研究报告
- 蓝军战略课件
- 物业管理重难点分析及解决措施
- 北京邮电大学《数据库系统》2022-2023学年第一学期期末试卷
- 湖北省黄冈市2023-2024学年高一上学期期末考试化学试题(含答案)
- 中国HDMI高清线行业市场动态分析及未来趋势研判报告
- 物流公司安全生产监督检查管理制度
评论
0/150
提交评论