2024届河南省十所重点名校高一数学第一学期期末复习检测试题含解析_第1页
2024届河南省十所重点名校高一数学第一学期期末复习检测试题含解析_第2页
2024届河南省十所重点名校高一数学第一学期期末复习检测试题含解析_第3页
2024届河南省十所重点名校高一数学第一学期期末复习检测试题含解析_第4页
2024届河南省十所重点名校高一数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省十所重点名校高一数学第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数的部分图象大致是图中的()A.. B.C. D.2.下列关于函数,的单调性的叙述,正确的是()A.在上是增函数,在上是减函数B.在和上是增函数,在上是减函数C.在上是增函数,在上是减函数D.在上是增函数,在和上是减函数3.已知定义在上的奇函数满足,且当时,,则()A. B.C. D.4.若,则是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角5.已知,则的大小关系是A. B.C. D.6.圆的半径和圆心坐标分别为A. B.C. D.7.函数的单调递增区间是()A. B.C. D.8.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.89.若一个三角形采用斜二测画法作直观图,则其直观图的面积是原来三角形面积的()倍.A B.C. D.210.若函数在区间上单调递增,则实数k的取值范围是()A. B.C. D.11.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位12.下列函数是偶函数的是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________14.如图,某化学实验室的一个模型是一个正八面体(由两个相同的正四棱锥组成,且各棱长都相等)若该正八面体的表面积为,则该正八面体外接球的体积为___________;若在该正八面体内放一个球,则该球半径的最大值为___________.15.若,,则a、b的大小关系是______.(用“<”连接)16.若关于x的不等式对一切实数x恒成立,则实数k的取值范围是___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知幂函数在上为增函数.(1)求实数的值;(2)求函数的值域.18.已知集合.(1)当时,求;(2)当时,求实数的取值范围.19.已知函数是偶函数(其中为自然对数的底数,…)(1)求的值;(2)若方程在区间上有实数根,求实数的取值范围20.已知函数.(1)求其最小正周期和对称轴方程;(2)当时,求函数的单调递减区间和值域.21.已知集合,关于的不等式的解集为(1)求;(2)设,若集合中只有两个元素属于集合,求的取值范围22.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据函数的奇偶性及函数值得符号即可得到结果.【详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【点睛】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题2、D【解析】根据正弦函数的单调性即可求解【详解】解:因为的单调递增区间为,,,单调递减区间为,,,又,,所以函数在,上是增函数,在,和,上是减函数,故选:D3、C【解析】先推导出函数的周期为,可得出,然后利用函数的奇偶性结合函数的解析式可计算出结果.【详解】函数是上的奇函数,且,,,所以,函数的周期为,则.故选:C.【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题.4、D【解析】由已知可得即可判断.【详解】,即,则且,是第二象限或第三象限角.故选:D.5、B【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【详解】,,,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6、D【解析】半径和圆心坐标分别为,选D7、B【解析】先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数y=log3(x2-2x)的单调递增区间【详解】函数y=log5(x2-2x)的定义域为(-∞,0)∪(2,+∞),令t=x2-2x,则y=log5t,∵y=log5t为增函数,t=x2-2x在(-∞,0)上为减函数,在(2,+∞)为增函数,∴函数y=log5(x2-2x)的单调递增区间为(2,+∞),故选B【点睛】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调性,其中复合函数单调性“同增异减”是解答本题的关键8、B【解析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.9、A【解析】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的,故直观图中三角形面积是原三角形面积的.故选:A.【点睛】本题考查平面图形的直观图,由斜二测画法看三角形底边长和高的变化即可,属于基础题.10、C【解析】根据函数的单调性得到关于k的不等式组,解出即可【详解】解:f(x)==1+,若f(x)在(﹣2,+∞)上单调递增,则,故k≤﹣2,故选:C11、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.12、C【解析】函数的定义域为所以函数为奇函数;函数是非奇非偶函数;函数的图象关于y轴对称,所以该函数是偶函数;函数的对称轴方程为x=−1,抛物线不关于y轴对称,所以该函数不是偶函数.故选C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、②③④【解析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【点睛】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.14、①.②.【解析】由已知求得正八面体的棱长为,进而求得,即知外接球的半径,进而求得体积;若球O在正八面体内,则球O半径的最大值为O到平面的距离,证得平面,再利用相似可知,即可求得半径.【详解】如图,记该八面体为,O为正方形的中心,则平面设,则,解得.在正方形中,,则在直角中,知,即正八面体外接球的半径为故该正八面体外接球的体积为.若球O在正八面体内,则球O半径的最大值为O到平面的距离.取的中点E,连接,,则,又,,平面过O作于H,又,,所以平面,又,,则,则该球半径的最大值为.故答案为:,15、【解析】容易看出,<0,>0,从而可得出a,b的大小关系【详解】,>0,,∴a<b故答案为a<b【点睛】本题主要考查对数函数的单调性,考查对数函数和指数函数的值域.意在考查学生对这些知识的理解掌握水平和分析推理能力.16、【解析】根据一元二次不等式与二次函数的关系,可知只需判别式,利用所得不等式求得结果.【详解】不等式对一切实数x恒成立,,解得:故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)解方程再检验即得解;(2)令,再求函数的值域即得解.【小问1详解】解:由题得或.当时,在上为增函数,符合题意;当时,在上为减函数,不符合题意.综上所述.【小问2详解】解:由题得,令,抛物线的对称轴为,所以.所以函数的值域为.18、(1)(2)【解析】(1)先求解集合,再根据交集运算求解结果(2)讨论当时,,当时,列出不等式组,能求出实数的取值范围【小问1详解】已知集合.当时,,【小问2详解】当即时,,符合题意;当时,要满足条件,则有,解得,综上所述,实数的取值范围19、(1);(2)【解析】(1)由偶函数的定义可得恒成立,即可求出值;(2)由题意可分离参数得出有解,求出的值域即可.【详解】(1)是偶函数,恒成立,,解得;(2)由(1)知,由得,令,当时,,则,故时,方程在区间上有实数根,故的取值范围为.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解20、(1)最小正周期为,对称轴方程;(2)单调递减区间为,值域为.【解析】(1)利用倍角公式、辅助角公式化简函数,结合正弦函数的性质计算作答.(2)确定函数的相位范围,再借助正弦函数的性质计算作答.【小问1详解】依题意,,则,由解得:,所以,函数的最小正周期为,对称轴方程为.【小问2详解】由(1)知,因,则,而正弦函数在上单调递减,在上单调递增,由解得,由解得,因此,在上单调递减,在上单调递增,,而,即,所以函数单调递减区间是,值域为.21、(1)或;(2).【解析】(1)解分式不等式得集合A,解绝对值不等式得集合B,由集合的补运算和交运算的定义可得结论;(2)由(1)知集合P={-2,2,3},而集合Q中最大与最小值差为2,因此只有2,3是集合Q中的元素,从而得关于m的不等式,可得m的范围试题解析:(1)或(2)∵可知P中只可能元素2,3属于Q解得22、(1),;(2)见解析;(3).【解析】(1)根据函数奇偶性得,,解得的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论