版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省赣中南五校联考高一数学第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在区间上单调递增,且在区间上只取得一次最大值,则取值范围是()A. B.C. D.2.已知一个水平放置的平面四边形的直观图是边长为1的正方形,则原图形的周长为()A.6 B.8C. D.3.已知,则A.-2 B.-1C. D.24.已知圆与直线交于,两点,过,分别作轴的垂线,且与轴分别交于,两点,若,则A.或1 B.7或C.或 D.7或15.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且6.有四个关于三角函数的命题::xR,+=:x、yR,sin(x-y)=sinx-siny:x=sinx:sinx=cosyx+y=其中假命题的是A., B.,C., D.,7.对于函数的图象,关于直线对称;关于点对称;可看作是把的图象向左平移个单位而得到;可看作是把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到以上叙述正确的个数是A.1个 B.2个C.3个 D.4个8.函数的图象如图所示,则()A. B.C. D.9.设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是A. B.C. D.10.()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知满足任意都有成立,那么的取值范围是___________.12.已知函数若,则的值为______13.已知等差数列的前项和为,,则__________14.设a>0且a≠1,函数fx15.已知,且,写出一个满足条件的的值___________16.函数的值域是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.将函数(且)的图象向左平移1个单位,再向上平移2个单位,得到函数的图象,(1)求函数的解析式;(2)设函数,若对一切恒成立,求实数的取值范围;(3)若函数在区间上有且仅有一个零点,求实数的取值范围.18.已知函数,,(1)求函数的值域;(2)若对任意的,都有恒成立,求实数a的取值范围;(3)若对任意的,都存在四个不同的实数,,,,使得,其中,2,3,4,求实数a的取值范围19.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分均值和方差;(2)从甲比赛得分在分以下场比赛中随机抽取场进行失误分析,求抽到场都不超过均值的概率20.已知四棱锥,其中面为的中点.(1)求证:面;(2)求证:面面;(3)求四棱锥的体积.21.已知函数,(,且)(1)求函数的定义域;(2)当时,求关于的不等式的解集
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据三角恒等变换化简,结合函数单调区间和取得最值的情况,利用整体法即可求得参数的范围.【详解】因为,因为在区间上单调递增,由,则,则,解得,即;当时,,要使得该函数取得一次最大值,故只需,解得;综上所述,的取值范围为.故选:C.第II卷2、B【解析】由斜二测画法的规则,把直观图还原为原平面图形,再求原图形的周长【详解】解:由斜二测画法的规则知,与轴平行的线段其长度不变以及与横轴平行的性质不变,正方形的对角线在轴上,可求得其长度为,所以在平面图中其在轴上,且其长度变为原来2倍,是,其原来的图形如图所示;所以原图形的周长是:故选:【点睛】本题考查了平面图形的直观图应用问题,能够快速的在直观图和原图之间进行转化,是解题的关键,属于中档题3、B【解析】,,则,故选B.4、A【解析】由题可得出,利用圆心到直线的距离可得,进而求得答案【详解】因为直线的倾斜角为,,所以,利用圆心到直线的距离可得,解得或.【点睛】本题考查直线与圆的位置关系,属于一般题5、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..6、A【解析】故是假命题;令但故是假命题.7、B【解析】由判断;由判断;由的图象向左平移个单位,得到的图象判断;由的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象判断.【详解】对于函数的图象,令,求得,不是最值,故不正确;令,求得,可得的图象关于点对称,故正确;把的图象向左平移个单位,得到的图象,故不正确;把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象,故正确,故选B【点睛】本题通过对多个命题真假的判断,综合考查三角函数的对称性以及三角函数的图象的变换规律,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.8、C【解析】根据正弦型函数图象与性质,即可求解.【详解】由图可知:,所以,故,又,可求得,,由可得故选:C.9、D【解析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上根据点A(−1,−1)和点C(1,0)坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选D.10、A【解析】由根据诱导公式可得答案.【详解】故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.12、4【解析】根据自变量所属的区间,代入相应段的解析式求值即可.【详解】由题意可知,,解得,故答案为:413、161【解析】由等差数列的性质可得,即可求出,又,带入数据,即可求解【详解】由等差数列的性质可得=,所以,又由等差数列前n项和公式得【点睛】本题考查等差数列的性质及前n项和公式,属基础题14、1,0【解析】令指数为0即可求得函数图象所过的定点.【详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).15、π(答案不唯一)【解析】利用,可得,又,确定可得结果.【详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)16、##【解析】求出的范围,再根据对数函数的性质即可求该函数值域.【详解】,而定义域上递减,,无最小值,函数的值域为故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所求范围;(3)将化简为,由题意可得只需在区间,,上有唯一解,利用图象,数形结合求得答案.【小问1详解】将函数且的图象向左平移1个单位,得到的图象,再向上平移2个单位,得到函数的图象,即:;【小问2详解】函数,,若对一切恒成立,则对一切恒成立,由在递增,可得,所以,即的取值范围是,;【小问3详解】关于的方程且,故函数在区间上有且仅有一个零点,等价于在区间上有唯一解,作出函数且的图象,如图示:当时,方程的解有且只有1个,故实数p的取值范围是.18、(1);(2);(3)【解析】(1)利用基本函数的单调性即得;(2)由题可得恒成立,再利用基本不等式即求;(3)由题意可知对任意一个实数,方程有四个根,利用二次函数的图像及性质可得,即求.【小问1详解】∵函数,,所以函数在上单调递增,∴函数的值域为;【小问2详解】∵对任意的,都有恒成立,∴,即,即有,故有,∵,,∴,当且仅当,即取等号,∴,即,∴实数a的取值范围为;【小问3详解】∵函数的值域为,由题意可知对任意一个实数,方程有四个根,又,则必有,令,,故有,故有,可解得,∴实数a的取值范围为.19、(1)15,32.25(2)【解析】(1)由已知中的茎叶图,代入平均数和方差公式,可得得答案;(2)根据古典概型计算即可求解.【详解】(1)这8场比赛队员甲得分为:7,8,10,15,17,19,21,23故平均数为:,方差:.(2)从甲比赛得分在分以下的场比赛中随机抽取场,共有15中种不同的取法,其中抽到场都不超过均值的为得分共6种,由古典概型概率公式得.20、(1)证明见解析;(2)证明见解析;(3).【解析】(1)取中点,连接,根据三角形的中位线,得到四边形为平行四边形,进而得到,再结合线面平行的判定定理,即可证明面;(2)根据为等边三角形,为的中点,面,得到,根据线面垂直的判定定理得到面,则面,再由面面垂直的判定定理,可得面面;(3)连接,可得四棱锥分为两个三棱锥和,利用体积公式,即可求解三棱锥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学院校外实践基地协议书
- 暨南大学《美学》2023-2024学年第一学期期末试卷
- 暨南大学《国家金融学》2021-2022学年第一学期期末试卷
- 房屋拆迁补偿协议(2024年版)
- 软件工程师工作总结
- 科学计算语言Julia及MWORKS实践 课件8 - 基本数据类型
- 糖尿病伤口的护理评估
- 衣柜导购培训
- 翻译三级笔译实务模拟真题五
- 新生儿观察与护理
- 大凉山精准脱贫智慧树知到期末考试答案章节答案2024年西昌学院
- 2024年秋八年级历史上册 第七单元 解放战争 第23课 内战爆发教案 新人教版
- 2024年乙方房屋租赁合同
- 读书是教师最好的修行读书分享
- 人教版一年级数学上册第四单元《认识图形(一)》(大单元教学设计)
- Module 4 Unit 2 How much is it(教案)外研版(三起)英语四年级上册
- 2024年高考英语读后续写真题试题分析及范文讲义
- TS气瓶检验质量手册
- 2022年北京密云初二(上)期末道德与法治试卷及答案
- 物业公司培训计划方案(2篇)
- 小学一年级上册语文练习题可打印
评论
0/150
提交评论