版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年浙江省温州树人中学数学高一上期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.直线l过点,且与以为端点的线段相交,则直线l的斜率的取值范围是()A. B.C. D.2.某几何体的三视图如图所示,则该几何体的表面积等于A. B.C. D.153.用斜二测画法画一个水平放置平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.4.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是()A. B.C. D.5.已知是定义在上的单调函数,满足,则函数的零点所在区间为()A. B.C. D.6.已知指数函数的图象过点,则()A. B.C.2 D.47.且,则角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角8.设a为实数,“”是“对任意的正数x,”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件9.半径为2的扇形OAB中,已知弦AB的长为2,则的长为A. B.C. D.10.如图是某班名学生身高的频率分布直方图,那么该班身高在区间内的学生人数为A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.如图,在棱长均相等的正四棱锥最终,为底面正方形的重心,分别为侧棱的中点,有下列结论:①平面;②平面平面;③;④直线与直线所成角的大小为其中正确结论的序号是______.(写出所有正确结论的序号)12.若函数在[-1,2]上的最大值为4,最小值为m,且函数在上是增函数,则a=______.13.函数(a>0且a≠1)的图象恒过点定,若角终边经过点,则___________.14.已知函数图像关于对称,当时,恒成立,则满足的取值范围是_____________15.已知正实数a,b满足,则的最小值为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)若在区间上有最小值为,求实数m的值;(2)若时,对任意的,总有,求实数m的取值范围17.已知,计算下列各式的值.(1);(2).18.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.(1)求;(2)求的值.19.对于两个函数:和,的最大值为M,若存在最小的正整数k,使得恒成立,则称是的“k阶上界函数”.(1)若,是的“k阶上界函数”.求k的值;(2)已知,设,,.(i)求的最小值和最大值;(ii)求证:是的“2阶上界函数”.20.已知,,,请在①②,③中任选一个条件,补充在横线上(1)求的值;(2)求的值21.(1)若正数a,b满足,求的最小值,并求出对应的a,b的值;(2)若正数x,y满足,求的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】作出图形,并将直线l绕着点M进行旋转,使其与线段PQ相交,进而得到l斜率的取值范围.【详解】∵直线l过点,且与以,为端点的线段相交,如图所示:∴所求直线l的斜率k满足或,,则或,∴,故选:D2、B【解析】根据三视图可知,该几何体为一个直四棱柱,底面是直角梯形,两底边长分别为,高为,直四棱柱的高为,所以底面周长为,故该几何体的表面积为,故选B考点:1.三视图;2.几何体的表面积3、C【解析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形面积为.故选:C4、D【解析】根据单调性的定义可知函数在R上为增函数,即可得到,解出不等式组即可得到实数的取值范围【详解】∵对任意实数,都有成立,∴函数在R上为增函数,∴,解得,∴实数的取值范围是故选:D5、C【解析】设,即,再通过函数的单调性可知,即可求出的值,得到函数的解析式,然后根据零点存在性定理即可判断零点所在区间【详解】设,即,,因为是定义在上的单调函数,所以由解析式可知,在上单调递增而,,故,即因为,,由于,即有,所以故,即的零点所在区间为故选:C【点睛】本题主要考查函数单调性的应用,零点存在性定理的应用,意在考查学生的转化能力,属于较难题6、C【解析】由指数函数过点代入求出,计算对数值即可.【详解】因为指数函数的图象过点,所以,即,所以,故选:C7、D【解析】直接由三角函数的象限符号取交集得答案.【详解】由,可得为第二或第四象限角;由,可得为第一、第四及轴非负半轴上的角∴取交集可得,是第四象限角故选:D8、A【解析】根据题意利用基本不等式分别判断充分性和必要性即可.【详解】若,因为,则,当且仅当时等号成立,所以充分性成立;取,因为,则,当且仅当时等号成立,即时,对任意的正数x,,但,所以必要性不成立,综上,“”是“对任意的正数x,”的充分非必要条件.故选:A.9、C【解析】由已知可求圆心角的大小,根据弧长公式即可计算得解【详解】设扇形的弧长为l,圆心角大小为,∵半径为2的扇形OAB中,弦AB的长为2,∴,∴故选C【点睛】本题主要考查了弧长公式的应用,考查了数形结合思想的应用,属于基础题10、C【解析】身高在区间内的频率为人数为,选C.点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1;频率分布直方图中组中值与对应区间概率乘积的和为平均数;频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①②③【解析】连接AC,易得PC∥OM,可判结论①证得平面PCD∥平面OMN,可判结论②正确由勾股数可得PC⊥PA,得到OM⊥PA,可判结论③正确根据线线平行先找到直线PD与直线MN所成的角为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,可判④错误【详解】如图,连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确同理PD∥ON,所以平面PCD∥平面OMN,结论②正确由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,结论③正确由于M,N分别为侧棱PA,PB的中点,所以MN∥AB,又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,故④错误故答案为①②③【点睛】本题考查线面平行、面面平行,考查线线角,考查学生分析解决问题的能力,属于中档题12、【解析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意13、【解析】利用指数函数的性质得出定点,由任意角三角函数的定义得出三角函数值,结合诱导公式代入求值即可【详解】,且故答案为:14、【解析】由函数图像关于对称,可得函数是偶函数,由当时,恒成立,可得函数在上为增函数,从而将转化为,进而可求出取值范围【详解】因为函数图像关于对称,所以函数是偶函数,所以可转化为因为当时,恒成立,所以函数在上为增函数,所以,解得,所以取值范围为,故答案为:15、##【解析】将目标式转化为,应用柯西不等式求取值范围,进而可得目标式的最小值,注意等号成立条件.【详解】由题设,,则,又,∴,当且仅当时等号成立,∴,当且仅当时等号成立.∴的最小值为.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)或;(2).【解析】(1)可知的对称轴为,讨论对称轴的范围求出最小值即可得出;(2)不等式等价于,求出最大值和最小值即可解出.【详解】(1)可知的对称轴为,开口向上,当,即时,,解得或(舍),∴当,即时,,解得,∴综上,或(2)由题意得,对,∵,,∴,∴,解得,∴【点睛】本题考查含参二次函数的最值问题,属于中档题.17、(1);(2).【解析】(1)将分子分母同除以,再将代入,得到要求式子的值(2)先将变形为,再将分子分母同除以,求得要求式子值【详解】∵,∴∴(1)将分子分母同除以,得到;(2)【点睛】本题主要考查同角三角函数的基本关系的应用,属于基础题18、(1);(2).【解析】(1)根据任意角三角函数的定义即可求解tanθ;(2)分式分子分母同时除以cos2θ化弦为切即可.【小问1详解】∵角的终边经过点,由三角函数的定义知,;【小问2详解】∵,∴.19、(1);(2)(i)时,,;时,,;时,,;(ii)证明部分见解析.【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可【小问1详解】时,单调递增,于是,于是,则最大值为,又恒成立,故,注意到是正整数,于是符合要求的为.【小问2详解】(i)依题意得,为开口向上,对称轴为的二次函数,于是在上递减,在上递增,由于,,下分类讨论:当,即时,,;当,即时,,;当,即当,在上递减,,.(ii),则,当,即取等号,,,则,下令,只需说明时,即可,分类如下:当时,,且注意到,此时,显然时,单调递减,于是;当,由基本不等式,,且,,即,此时,而,时,由基本不等式,,故有:综上,时,,即当时,最小正整数【点睛】本题综合的考查了分类讨论思想,函数值域的求法等问题,特别是观察分析出的最大值,若用三倍角公式反倒会变得更加复杂.20、(1);(2).【解析】(1)根据所选的条件求得,,再由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年沪科版必修1地理下册阶段测试试卷含答案
- 现代职业教育体系构建的战略措施与实施路径
- 2025年鲁人版六年级英语下册月考试卷
- 2024年设备购置预付款合同3篇
- 2025年度环保木门销售安装及维护保养合同协议3篇
- 2025版保密协议模板:针对企业商业秘密3篇
- 2024年沪科版七年级生物下册月考试卷含答案
- 2025年苏教版选择性必修3物理上册阶段测试试卷
- 2025年鲁科版三年级数学上册月考试卷含答案
- 2024年华东师大版第二册生物下册阶段测试试卷
- 离婚协议书完整版Word模板下载
- 招标代理机构内部监督管理制度
- 初中周末安全教育课件
- 2024年度医院骨肌肉康复科医务人员述职报告课件
- 小学四年级综合实践活动《羊毛毡化制作》教学公开课课件
- 工艺工程师述职报告
- 2024北京西城区初二(上)期末英语试卷及答案
- 小学生思维漫画合辑
- 智能医疗在泌尿外科手术中的数字导航
- 部编人教版语文八年级下册文言文课下注释
- 运动神经元病护理课件
评论
0/150
提交评论