2024届江苏省无锡市江阴市南菁高中高一上数学期末学业水平测试试题含解析_第1页
2024届江苏省无锡市江阴市南菁高中高一上数学期末学业水平测试试题含解析_第2页
2024届江苏省无锡市江阴市南菁高中高一上数学期末学业水平测试试题含解析_第3页
2024届江苏省无锡市江阴市南菁高中高一上数学期末学业水平测试试题含解析_第4页
2024届江苏省无锡市江阴市南菁高中高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡市江阴市南菁高中高一上数学期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点为,,,则该三角形的欧拉线方程为().注:重心坐标公式为横坐标:;纵坐标:A. B.C. D.2.已知f(x)=是R上的减函数,那么a的取值范围是()A.(0,1) B.C. D.3.设为所在平面内一点,若,则下列关系中正确的是A. B.C. D.4.设全集,集合,,则=()A. B.C. D.5.已知函数在[2,8]上单调递减,则k的取值范围是()A. B.C. D.6.函数的一个零点是()A. B.C. D.7.若,,,则的大小关系为()A. B.C. D.8.已知函数在上存在零点,则的取值范围为()A. B.C. D.9.已知函数的最大值与最小值的差为2,则()A.4 B.3C.2 D.10.已知函数是定义在R上的周期为2的偶函数,当时,,则A. B.C. D.11.如果,,那么()A. B.C. D.12.函数的单调递增区间是A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数,若是的最大值,则实数t的取值范围是______14.函数f(x)=sinx-2cosx+的一个零点是,则tan=_________.15.已知是偶函数,则实数a的值为___________.16.不论为何实数,直线恒过定点__________.三、解答题(本大题共6小题,共70分)17.已知二次函数的图象关于直线对称,且关于的方程有两个相等的实数根.(1)的值域;(2)若函数且在上有最小值,最大值,求的值.18.在初中阶段函数学习中,我们经历了“确定函数的表达式—利用函数图象研究其性质”,函数图象在探索函数的性质中有非常重要的作用,下面我们对已知经过点的函数的图象和性质展开研究.探究过程如下,请补全过程:x…0179…y…m0n…(1)①请根据解析式列表,则_________,___________;②在给出的平面直角坐标系中描点,并画出函数图象;(2)写出这个函数的一条性质:__________;(3)已知函数,请结合两函数图象,直接写出不等式的解集:____________.19.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格(单位:元)与时间x(单位:天)的函数关系近似满足,日销售量(单位:件)与时间x(单位:天)的部分数据如下表所示:x10152025305055605550(1)给出以下四个函数模型:①;②;③;④请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间x的变化关系,并求出该函数的解析式;(2)设该工艺品的日销售收入为(单位:元),求的最小值20.已知函数求:的最小正周期;的单调增区间;在上的值域21.如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ)求证:;(Ⅱ)当且为的中点时,求与平面所成的角的大小.22.定义在上奇函数,已知当时,求实数a的值;求在上的解析式;若存在时,使不等式成立,求实数m的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】由重心坐标公式得重心的坐标,根据垂直平分线的性质设出外心的坐标为,再由求出,然后求出欧拉线的斜率,点斜式就可求得其方程.【详解】设的重点为,外心为,则由重心坐标公式得,并设的坐标为,解得,即欧拉方程为:,即:故选:D【点睛】本题考查直线方程,两点之间的距离公式,三角形的重心、垂心、外心的性质,考查了理解辨析能力及运算能力.2、B【解析】要使函数在上为减函数,则要求①当,在区间为减函数,②当时,在区间为减函数,③当时,,综上①②③解不等式组即可.【详解】令,.要使函数在上为减函数,则有在区间上为减函数,在区间上为减函数且,∴,解得.故选:B【点睛】考查根据分段函数的单调性求参数的问题,根据单调性的定义,注意在分段点处的函数值的关系,属于中档题.3、A【解析】∵∴−=3(−);∴=−.故选A.4、B【解析】根据题意和补集的运算可得,利用交集的概念和运算即可得出结果.【详解】由题意知,所以.故选:B5、C【解析】利用二次函数的单调性可得答案.【详解】因为函数的对称轴为所以要使函数在[2,8]上单调递减,则有,即故选:C6、B【解析】根据正弦型函数的性质,函数的零点,即时的值,解三角方程,即可求出满足条件的的值【详解】解:令函数,则,则,当时,.故选:B7、A【解析】由指数函数的单调性可知,由对数函数的单调性可知,化简,进而比较大小即可【详解】因为在上是增函数,所以;在上是增函数,所以;,所以,故选:A【点睛】本题考查指数、对数比较大小问题,考查指数函数、对数函数的单调性的应用8、A【解析】根据零点存在定理及函数单调性可知,,解不等式组即可求得的取值范围.【详解】因为在上单调递增,根据零点存在定理可得,解得.故选:A【点睛】本题考查了函数单调性的判断,零点存在定理的应用,根据零点所在区间求参数的取值范围,属于基础题.9、C【解析】根据解析式可得其单调性,根据x的范围,可求得的最大值和最小值,根据题意,列出方程,即可求得a值.【详解】由题意得在上为单调递增函数,所以,,所以,解得,又,所以.故选:C10、A【解析】依题意有.11、D【解析】根据不等式的性质,对四个选项进行判断,从而得到答案.【详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【点睛】本题考查不等式的性质,属于简单题.12、D【解析】,选D.二、填空题(本大题共4小题,共20分)13、【解析】先求出时最大值为,再由是的最大值,解出t的范围.【详解】当时,,由对勾函数的性质可得:在时取得最大值;当时,,且是的最大值,所以,解得:.故答案为:14、##-0.5【解析】应用辅助角公式有且,由正弦型函数的性质可得,,再应用诱导公式求.【详解】由题设,,,令,可得,即,,所以,,则.故答案为:15、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:16、【解析】直线整理可得.令,解得,即直线恒过定点点睛:直线恒过定点问题,一般就是将参数提出来,使得其系数和其他项均为零,即可得定点.三、解答题(本大题共6小题,共70分)17、(1)(2)或【解析】(1)由题意可得且,从而可求出的值,则得,然后求出的值域,进而可求出的值域,(2)函数,设,则,然后分和两种情况求的最值,列方程可求出的值【小问1详解】根据题意,二次函数的图象关于直线对称,则有,即,①又由方程即有两个相等的实数根,则有,②联立①②可得:,,则,则有,则,即函数的值域为;【小问2详解】根据题意,函数,设,则,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,综合可得:或18、(1)①,;②答案见解析(2)函数的最小值为(3)或【解析】(1)把、分别代入函数解析式即可把下表补充完整;描点、连线即可得到函数的图象;(2)这个函数的最小值为;(3)画出两个函数的图象,结合图象即可求解结论【小问1详解】解:①将和分别代入函数解析式可得:,;②根据表格描点,连线,x013579y01可得这个函数的图象所示:;【小问2详解】解:由图象可知:这个函数的最小值为,(答案不唯一);【小问3详解】解:在同一直角坐标系中作出和图象如图所示:当时,令,解得,当时,令,解得,所以两个函数图象相交于点,所以当时,自变量x的取值范围为或,即不等式的解集为或.19、(1)选择模型②:,;(2)441.【解析】(1)根据表格数据的变化趋势选择函数模型,再将数据代入解析式求参数值,即可得解析式.(2)由题设及(1)所得解析式求的解析式,再由分段函数的性质,结合分式型函数最值的求法求的最小值【小问1详解】由表格数据知,当时间x变换时,先增后减,而①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,,所以日销售量与时间x的变化的关系式为【小问2详解】由(2)知:,所以,即,当,时,由基本不等式,可得,当且仅当时,即时等号成立,当,时,为减函数,所以函数的最小值为,综上,当时,函数取得最小值44120、(1);(2),;(3).【解析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论;利用正弦函数的单调性,求得的单调增区间;利用正弦函数的定义域和值域,求得在上的值域【详解】函数,故函数的最小正周期为.令,求得,可得函数的增区间为,在上,,,,即的值域为【点睛】本题主要考查三角恒等变换,正弦函数的周期性,单调性,定义域和值域,属于中档题.单调性:根据y=sint和t=的单调性来研究,由得单调增区间;由得单调减区间.21、(1)见解析(2)【解析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可【详解】(1)证明:∵底面ABCD是正方形∴AC⊥BD又PD⊥底面ABCDPD⊥AC所以AC⊥面PDB因此面AEC⊥面PDB(2)解:设AC与BD交于O点,连接EO则易得∠AEO为AE与面PDB所成的角∵E、O为中点∴EO=PD∴EO⊥AO∴在Rt△AEO中OE=PD=AB=AO∴∠AEO=45°即AE与面PDB所成角的大小为45°本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题22、(1);(2);(3).【解析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论