版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省遂溪县第一中学高一数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知,都是正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件2.不等式的解集为,则()A. B.C. D.3.已知矩形,,,将矩形沿对角线折成大小为的二面角,则折叠后形成的四面体的外接球的表面积是A. B.C. D.与的大小有关4.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A B.C. D.5.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1:3,这截面把圆锥母线分成的两段的比是(
)A.1:3 B.1:()C.1:9 D.6.设全集,集合,,则等于A. B.{4}C.{2,4} D.{2,4,6}7.半径为的半圆卷成一个圆锥,则它的体积为()A. B.C. D.8.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为A. B.C. D.9.已知函数是定义在上的偶函数,且在上是减函数,若,,,则,,的大小关系为()A. B.C. D.10.已知命题,则命题的否定为()A. B.C. D.11.已知,,且,则的最小值为()A. B.C.2 D.112.已知,那么()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知幂函数在上是增函数,则实数m的值是_________14.若,,则=______;_______15.正三棱锥中,,则二面角的大小为__________16.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知,,,为坐标原点.(1)若,求的值;(2)若,且,求.18.如图,已知四棱柱的底面是菱形,侧棱底面,是的中点,,.(1)证明:平面;(2)求直线与平面所成的角的正弦值.19.已知函数f(x)=(a,b为常数),且方程f(x)-x+12=0有两个零点分别为3和4.求函数f(x)的解析式20.已知函数(其中为常数)的图象经过两点.(1)判断并证明函数的奇偶性;(2)证明函数在区间上单调递增.21.已知线段AB的端点A的坐标为,端点B是圆:上的动点.(1)求过A点且与圆相交时的弦长为的直线的方程(2)求线段AB中点M的轨迹方程,并说明它是什么图形22.设两个非零向量与不共线,(1)若,,,求证:A,B,D三点共线;(2)试确定实数k,使和共线
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】利用特殊值法、基本不等式结合充分条件、必要条件的定义判断可得出结论.【详解】充分性:由于,,且,取,则,充分性不成立;必要性:由于,,且,解得,必要性成立.所以,当,时,“”“”必要不充分条件.故选:B.2、A【解析】由不等式的解集为,得到是方程的两个根,由根与系数的关系求出,即可得到答案【详解】由题意,可得不等式的解集为,所以是方程的两个根,所以可得,,解得,,所以,故选:A3、C【解析】由题意得,在二面角内的中点O到点A,B,C,D的距离相等,且为,所以点O即为外接球的球心,且球半径为,所以外接球的表面积为.选C4、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C5、B【解析】平行于底面的平面截圆锥可以得到一个小圆锥,利用它的底面与原圆锥的底面的面积之比得到相应的母线长之比,故可得截面分母线段长所成的两段长度之比.【详解】设截面圆的半径为,原圆锥的底面半径为,则,所以小圆锥与原圆锥的母线长之比为,故截面把圆锥母线段分成的两段比是.选B.【点睛】在平面几何中,如果两个三角形相似,那么它们的面积之比为相似比的平方,类似地,在立体几何中,平行于底面的平面截圆锥所得的小圆锥与原来的圆锥的底面积之比为,体积之比为(分别为小圆锥的底面半径和原圆锥的底面半径).6、C【解析】由并集与补集的概念运算【详解】故选:C7、A【解析】根据题意可得圆锥母线长为,底面圆的半径为,求出圆锥高即可求出体积.【详解】半径为半圆卷成一个圆锥,可得圆锥母线长为,底面圆周长为,所以底面圆的半径为,圆锥的高为,所以圆锥的体积为.故选:A.8、A【解析】由题意利用函数的图象变换法则,即可得出结论【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选【点睛】本题主要考查函数的图象变换法则,注意对的影响9、B【解析】分析:利用函数的单调性即可判断.详解:因为函数为偶函数且在(−∞,0)上单调递减,所以函数在(0,+∞)上单调递增,由于,所以.故选B.点睛:对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系10、D【解析】由特称(存在)量词命题的否定是全称量词命题直接可得.【详解】由特称(存在)量词命题的否定是全称量词命题直接可得:命题的否定为:.故选:D11、A【解析】由已知条件得出,再将代数式与相乘,展开后利用基本不等式可求得的最小值.【详解】已知,且,,由基本不等式可得,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题考查利用基本不等式求代数式的最值,考查的妙用,考查计算能力,属于基础题.12、B【解析】先利用指数函数单调性判断b,c和1大小关系,再判断a与1的关系,即得结果.【详解】因为在单调递增,,故,即,而,故.故选:B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、1【解析】因为幂函数在上是增函数,所以,解得,又因为,所以.故填1.14、①.②.【解析】首先指对互化,求,再求;第二问利用指数运算,对数,化简求值.【详解】,,所以;,,所以故答案为:;15、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以16、【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)由向量平行的坐标运算列式直接求解即可;(2)先求得的坐标,利用坐标表示向量的模长,列方程求得,从而得,利用向量坐标表示数量积即可得解.【详解】(1)依题,,因,所以,所以(2)因为,所以,所以,因为,所以,所以,所以【点睛】本题主要考查了向量的坐标运算,包括共线、模长、数量积,属于基础题.18、(1)详见解析;(2).【解析】(1)连接交于点,连接,,可证明四边形是平行四边形,从而,再由线面平行的判定即可求解;(2)作出平面的垂线,即可作出线面角,求出相关线段的长度即可求解.试题解析:(1)连接交于点,连接,,∵为菱形,∴点在上,且,又∵,故四边形是平行四边形,则,∴平面;(2)由于为菱形,∴,又∵是直四棱柱,∴,平面,∴平面平面,过点作平面和平面交线的垂线,垂足为,得平面,连接,则是直线平面所成的角,设,∵是菱形且,则,,在中,由,,得,在中,由,,得,∴.考点:1.线面平行的判定;2.线面角的求解.19、【解析】将3和4分别代入方程得,解得,进而可得.试题解析:将3和4分别代入方程-x+12=0得解得所以已知零点求函数解析式的一般步骤为:
将零点代入函数得到方程;
求出方程中的未知参数;
将参数代入即可得其解析式.20、(1)见解析;(2)见解析.【解析】⑴根据函数奇偶性的定义判断并证明函数的奇偶性;⑵根据函数单调性的定义证明即可;解析:(1)解:∵函数的图象经过两点∴解得∴.判断:函数是奇函数证明:函数的定义域,∵对于任意,,∴函数是奇函数.(2)证明:任取,则∵,∴,∴.∴在区间上单调递增.21、(1)或;(2)点M的轨迹是以(4,2)为圆心,半径为1的圆.【解析】⑴设直线的斜率为,求得直线的方程,再根据与圆相交的弦长为,求得圆心到直线的距离,求出即可得到直线的方程;⑵设出的坐标,确定动点之间坐标的关系,利用在圆上,可得结论;解析:(1)根据题意设直线的斜率为k,则直线的方程为,且与圆相交的弦长为,所以圆心到直线的距离为解得所以直线的方程为或(2)设∵M是线段AB的中点,又A(4,3)∴得又在圆上,则满足圆的方程∴整理得为点M的轨迹方程,点M的轨迹是以(4,2)为圆心,半径为1的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械测绘课程设计
- 机械工程课程设计
- 七年级生物下册 13.4《当代主要疾病和预防》教案 北师大版
- 海外光伏项目EPC合同管理探讨
- 机械专业数字阀课程设计
- 机房收费管理系统java课程设计
- 2024年企业云计算与大数据服务合同
- 机器自动化大学课程设计
- 消防安全危险化学品使用管理制度
- 2024年创新设计:智慧城市交通规划协议
- 奖牌投标方案
- 铝型材挤压车间操作流程及作业指导书
- 陕西中考物理备考策略课件
- 美国博物馆教育研究
- 9F燃机燃机规程
- 部编版五年级上册《我的长生果》公开课一等奖优秀课件
- 人民调解培训课件(共32张PPT)
- 小学部编版五年级语文上册教案(全)
- 绿化养护报价表
- 《工业革命与工厂制度》
- 课程领导力-资料教学课件
评论
0/150
提交评论