版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省唐山市玉田县高一数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.已知函数的定义域是且满足如果对于,都有不等式的解集为A. B.C. D.2.若,则有()A.最小值为3 B.最大值为3C.最小值为 D.最大值为3.cos600°值等于A. B.C. D.4.已知非空集合,则满足条件的集合的个数是()A.1 B.2C.3 D.45.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1:3,这截面把圆锥母线分成的两段的比是(
)A.1:3 B.1:()C.1:9 D.6.函数的图象的一个对称中心是()A B.C. D.7.某几何体的三视图如图所示,则该几何体的体积为()A.8π B.16πC. D.8.将化为弧度为A. B.C. D.9.若在上单调递减,则的取值范围是().A. B.C. D.10.已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c11.第24届冬季奥林匹克运动会,将于2022年2月4日~2月20日在北京和张家口联合举行.为了更好地安排志愿者工作,现需要了解每个志愿者掌握的外语情况,已知志愿者小明只会德、法、日、英四门外语中的一门.甲说,小明不会法语,也不会日语:乙说,小明会英语或法语;丙说,小明会德语.已知三人中只有一人说对了,由此可推断小明掌握的外语是()A.德语 B.法语C.日语 D.英语12.已知集合A. B.C. D.二、填空题(本大题共4小题,共20分)13.在中,,,则面积的最大值为___________.14.若圆上有且仅有两个点到直线的距离等于1,则半径R的取值范围是_____15.已知函数的图象如图,则________16.已知幂函数y=xα的图象过点(4,),则α=__________.三、解答题(本大题共6小题,共70分)17.(1)已知是角终边上一点,求,,的值;(2)已知,求下列各式的值:①;②18.已知函数,.(1)求的最小正周期和单调区间;(2)求在闭区间上的最大值和最小值19.函数.(1)求,;(2)求函数在上的最大值与最小值.20.设全集,,.求,,,21.在三棱锥中,平面,,,,分别是,的中点,,分别是,的中点.(1)求证:平面.(2)求证:平面平面.22.已知函数,其中向量,,.(1)求函数的最大值;(2)求函数的单调递增区间.
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】令x=,y=1,则有f()=f()+f(1),故f(1)=0;令x=,y=2,则有f(1)=f()+f(2),解得,f(2)=﹣1,令x=y=2,则有f(4)=f(2)+f(2)=﹣2;∵对于0<x<y,都有f(x)>f(y),∴函数f(x)是定义在(0,+∞)上的减函数,故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4),故,解得,﹣1≤x<0.∴不等式的解集为故选D点睛:本题重点考查了抽象函数的性质及应用,的原型函数为的原型函数为,.2、A【解析】利用基本不等式即得,【详解】∵,∴,∴,当且仅当即时取等号,∴有最小值为3.故选:A.3、B【解析】利用诱导公式化简即可得到结果.【详解】cos600°故选B【点睛】本题考查利用诱导公式化简求值,考查特殊角的三角函数值,属于基础题.4、C【解析】由题意可知,集合为集合的子集,求出集合,利用集合的子集个数公式可求得结果.【详解】,所以满足条件的集合可以为,共3个,故选:C.【点睛】本题考查集合子集个数的计算,考查计算能力,属于基础题.5、B【解析】平行于底面的平面截圆锥可以得到一个小圆锥,利用它的底面与原圆锥的底面的面积之比得到相应的母线长之比,故可得截面分母线段长所成的两段长度之比.【详解】设截面圆的半径为,原圆锥的底面半径为,则,所以小圆锥与原圆锥的母线长之比为,故截面把圆锥母线段分成的两段比是.选B.【点睛】在平面几何中,如果两个三角形相似,那么它们的面积之比为相似比的平方,类似地,在立体几何中,平行于底面的平面截圆锥所得的小圆锥与原来的圆锥的底面积之比为,体积之比为(分别为小圆锥的底面半径和原圆锥的底面半径).6、B【解析】利用正弦函数的对称性质可知,,从而可得函数的图象的对称中心为,再赋值即可得答案【详解】令,,解得:,.所以函数的图象的对称中心为,.当时,就是函数的图象的一个对称中心,故选:B.7、A【解析】由三视图还原直观图得到几何体为高为4,底面半径为2圆柱体的一半,即可求出体积.【详解】由三视图知:几何体直观图为下图圆柱体:高为h=4,底面半径r=2圆柱体的一半,∴,故选:A8、D【解析】根据角度制与弧度制的关系求解.【详解】因为,所以.故选:D.9、B【解析】令f(x)=,由题意得f(x)在上单调递增,且f(﹣1),由此能求出a的取值范围【详解】∵函数在上单调递减,令f(x)=,∴f(x)=在上单调递增,且f(﹣1)∴,解得a≤8故选B.【点睛】本题考查实数值的求法,注意函数的单调性的合理运用,属于基础题.10、B【解析】利用对数的运算性质求出a、b、c的范围,即可得到正确答案.【详解】因为a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故选:B11、B【解析】根据题意,分“甲说对,乙、丙说错”、“乙说对,甲、丙说错”、“丙说对,甲、乙说错”三种情况进行分析,即可得到结果.【详解】若甲说对,乙、丙说错:甲说对,小明不会法语也不会日语;乙说错,则小明不会英语也不会法语;丙说错,则小明不会德语,由此可知,小明四门外语都不会,不符合题意;若乙说对,甲、丙说错:乙说对,则小明会英活或法语;甲说错,则小明会法语或日语;丙说错,小明不会德语;则小明会法语;若丙说对,甲、乙说错:丙说对,则小明会德语;甲说错,到小明会法语或日语;乙说错,则小明不会英语也不会法语;则小明会德语或日语,不符合题意;综上,小明会法语.故选:B.12、D【解析】由已知,所以考点:集合的运算二、填空题(本大题共4小题,共20分)13、【解析】利用诱导公式,两角和与差余弦公式、同角间的三角函数关系得,得均为锐角,设边上的高为,由表示出,利用基本不等式求得的最大值,即可得三角形面积最大值【详解】中,,所以,整理得,即,所以均为锐角,作于,如图,记,则,,所以,,当且仅当即时等号成立.所以,的最大值为故答案为:14、【解析】根据题意分析出直线与圆的位置关系,再求半径的范围.【详解】圆心到直线的距离为2,又圆(x﹣1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,满足,即:|R﹣2|<1,解得1<R<3故半径R的取值范围是1<R<3(画图)故答案为:【点睛】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.15、8【解析】由图像可得:过点和,代入解得a、b【详解】由图像可得:过点和,则有:,解得∴故答案为:816、【解析】把点的坐标代入幂函数解析式中即可求出.【详解】解:由幂函数的图象过点,所以,解得.故答案为:.三、解答题(本大题共6小题,共70分)17、(1);;;(2)①;②【解析】(1)利用三角函数的定义即可求解.(2)求出,再利用齐次式即可求解.【详解】(1)是角终边上一点,则,,.(2)由,则,①.②18、(1)最小正周期为,单调递增区间是,单调递减区间是;(2)最小值为,最大值为【解析】(1)由三角函数中的恒等变换应用化简函数解析式可得,利用正弦函数的性质即得;(2)利用正弦函数的性质即求【小问1详解】由,∴的最小正周期为,由,得,由,得∴函数单调增区间为,函数单调减区间为;【小问2详解】由于,所以,所以,故,故函数的最小值为,函数的最大值为19、(1),(2),【解析】(1)首先利用两角和的正弦公式及辅助角公式将函数化简,再代入求值即可;(2)由的取值范围求出的范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为所以即,所以,【小问2详解】解:由(1)可知,∵,∴,∴,∴,∴,令,即时取到最大值,,令,即时取到最小值.20、或,,,或【解析】依据补集定义求得,再依据交集定义求得;依据交集定义求得,再依据补集定义求得.【详解】,,,则或,则,则或21、(1)见解析;(2)见解析.【解析】(1)根据线面平行的判定定理可证明平面;(2)根据面面垂直的判定定理即可证明平面平面.【详解】(1)证明:连结,在中,,分别是,的中点,为的中位线,.在,,分别是,的中点,是的中位线,,.平面,平面.(2)证明:,,,,,平面且面平面平面【点睛】本题主要考查直线与平面平行的判定和平面与平面垂直的判定,属于基础题型.22、见解析【解析】【试题分析】(1)利用向量的运算,求出的表达式并利用辅助角公式化简,由此求得函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械测绘课程设计
- 机械工程课程设计
- 七年级生物下册 13.4《当代主要疾病和预防》教案 北师大版
- 海外光伏项目EPC合同管理探讨
- 四年级信息技术上册 第二单元 第9课《媒体播放器》教学设计 冀教版
- 机械专业数字阀课程设计
- 机房收费管理系统java课程设计
- 2024年企业云计算与大数据服务合同
- 机器自动化大学课程设计
- 消防安全危险化学品使用管理制度
- 奖牌投标方案
- 铝型材挤压车间操作流程及作业指导书
- 陕西中考物理备考策略课件
- 美国博物馆教育研究
- 9F燃机燃机规程
- 部编版五年级上册《我的长生果》公开课一等奖优秀课件
- 人民调解培训课件(共32张PPT)
- 小学部编版五年级语文上册教案(全)
- 绿化养护报价表
- 《工业革命与工厂制度》
- 课程领导力-资料教学课件
评论
0/150
提交评论