版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南通市如东县高一数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图所示,则函数的解析式为()A. B.C. D.2.同时掷两枚骰子,所得点数之和为的概率为A. B.C. D.3.函数,则的大致图象是()A. B.C. D.4.下列函数中,在上是增函数的是A. B.C. D.5.函数y=的定义域是()A. B.C. D.6.函数在区间上的所有零点之和等于()A.-2 B.0C.3 D.27.若角600°的终边上有一点(-4,a),则a的值是A. B.C. D.8.函数图象大致是()A. B.C. D.9.下列函数在上是增函数的是A. B.C. D.10.在实数的原有运算法则中,补充定义新运算“”如下:当时,;当时,,已知函数,则满足的实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个几何体的三视图如图所示,则该几何体的体积为__________.12.已知,则___________.13.函数的最小值为________.14.已知幂函数(是常数)的图象经过点,那么________15.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.16.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:.已知新丸经过50天后,体积变为.若一个新丸体积变为,则需经过的天数为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图是函数的部分图像,是它与轴的两个不同交点,是之间的最高点且横坐标为,点是线段的中点.(1)求函数的解析式及上的单调增区间;(2)若时,函数的最小值为,求实数的值.18.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值19.揭阳市某体育用品商店购进一批羽毛球拍,每件进价为100元,售价为160元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价10元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?20.已知函数且.(1)试判断函数的奇偶性;(2)当时,求函数的值域;(3)若对任意,恒成立,求实数的取值范围21.已知数列的前n项和为(1)求;(2)若,求数列的前项的和
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由图像求出周期再根据可得,再由,代入可求,进而可求出解析式.【详解】由图象可知,,得,又∵,∴.当时,,即,解得.又,则,∴函数的解析式为.故选:B.【点睛】本题主要考查了由三角函数的图像求函数解析式,需熟记正弦型三角函数的周期公式,属于基础题.2、A【解析】本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6种结果,而满足条件的事件是两个点数之和是5,列举出有4种结果,根据概率公式得到结果.【详解】由题意知,本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6=36种结果,而满足条件的事件是两个点数之和是5,列举出有(1,4)(2,3)(3,2)(4,1),共有4种结果,根据古典概型概率公式得到P=.【点睛】古典概型要求能够列举出所有事件和满足条件的事件发生的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体3、D【解析】判断奇偶性,再利用函数值的正负排除三个错误选项,得正确结论【详解】,为偶函数,排除BC,又时,,时,,排除A,故选:D4、B【解析】对于,,当时为减函数,故错误;对于,,当时为减函数,故错误;对于,在和上都是减函数,故错误;故选5、A【解析】根据偶次方根的被开方数为非负数,对数的真数大于零列不等式,由此求得函数的定义域.【详解】依题意,所以的定义域为.故选:A6、C【解析】分析:首先确定函数的零点,然后求解零点之和即可.详解:函数的零点满足:,解得:,取可得函数在区间上的零点为:,则所有零点之和为.本题选择C选项.点睛:本题主要考查三角函数的性质,函数零点的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.7、C【解析】∵角的终边上有一点,根据三角函数的定义可得,即,故选C.8、A【解析】利用函数的奇偶性排除部分选项,再利用当x>0时,函数值的正负确定选项即可.【详解】函数f(x)定义域为,所以函数f(x)是奇函数,排除BC;当x>0时,,排除D故选:A9、A【解析】根据题意,依次分析选项中函数的单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,,在区间上单调递增,符合题意;对于B,,为指数函数,在区间上单调递减,不符合题意;对于C,,为对数函数,在区间上单调递减,不符合题意;对于D,反比例函数,在区间上单调递减,不符合题意;故选A【点睛】本题考查函数单调性的判断,属于基础题10、C【解析】当时,;当时,;所以,易知,在单调递增,在单调递增,且时,,时,,则在上单调递增,所以得:,解得,故选C点睛:新定义的题关键是读懂题意,根据条件,得到,通过单调性分析,得到在上单调递增,解不等式,要符合定义域和单调性的双重要求,则,解得答案二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】该几何体是一个半圆柱,如图,其体积为.考点:几何体的体积.12、##-0.75【解析】将代入函数解析式计算即可.【详解】令,则,所以.故答案为:13、【解析】原函数化为,令,将函数转化为,利用二次函数的性质求解.【详解】由原函数可化为,因为,令,则,,又因为,所以,当时,即时,有最小值.故答案为:14、【解析】首先代入函数解析式求出,即可得到函数解析式,再代入求出函数值即可;【详解】解:因为幂函数(是常数)的图象经过点,所以,所以,所以,所以;故答案:15、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.16、75【解析】由题意,先算出,由此可算出一个新丸体积变为需经过的天数.【详解】由已知,得,∴设经过天后,一个新丸体积变为,则,∴,∴,故答案为:75.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由点是线段的中点,可得和的坐标,从而得最值和周期,可得和,再代入顶点坐标可得,再利用整体换元可求单调区间;(2)令得到,讨论二次函数的对称轴与区间的位置关系求最值即可.【详解】(1)因为为中点,,所以,,则,,又因为,则所以,由又因为,则所以令又因为则单调递增区间为.(2)因为所以令,则对称轴为①当时,即时,;②当时,即时,(舍)③当时,即时,(舍)综上可得:.【点睛】本题主要考查了利用三角函数的图象求解三角函数的解析式及二次函数轴动区间定的最值问题,考查了学生的分类讨论思想及计算能力,属于中档题.18、(1)(2)(3)【解析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即可求出的取值范围;(3)利用偶函数的性质,即可求出【详解】(1)因为函数图象过点,所以,解得.则,因为,所以,所以函数的值域为.(2)方程有实根,即,有实根,构造函数,则,因为函数在R上单调递减,而在(0,)上单调递增,所以复合函数是R上单调递减函数所以在上,最小值,最大值为,即,所以当时,方程有实根(3),是R上的偶函数,则满足,即恒成立,则恒成立,则恒成立,即恒成立,故,则恒成立,所以.【点睛】本题考查了函数的奇偶性的应用,及对数函数的性质,属于中档题19、(1)4800(2)将售价定为150元,最大销售利润是5000元.【解析】(1)由销售利润=单件利润×销售量,即可求商家降价前每星期的销售利润;(2)由题意得销售利润,根据二次函数的性质即可知最大销售利润及对应的售价.【小问1详解】由题意,商家降价前每星期的销售利润为(元);【小问2详解】设售价定为元,则销售利润.当时,有最大值5000∴应将售价定为150元,最大销售利润是5000元.20、(1)偶函数;(2);(3).【解析】(1)先求得函数的定义域为R,再由,可判断函数是奇偶性;(2)由,所以,以及对数函数的单调性可得函数的值域;(3)对任意,恒成立,等价于,分,和,分别求得函数的最值,可求得实数的取值范围.【详解】(1)因为且,所以其定义域为R,又,所以函数是偶函数;(2)当时,,因为,所以,所以函数的值域为;(3)对任意,恒成立,等价于,当,因为,所以,所以,解得,当,因为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年版中国苜蓿草行业市场需求量预测及投资规模分析报告
- 2024-2030年版中国便携式气体检测仪行业前景预测及投资策略分析报告
- 2024-2030年液体化妆品灌装机行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年新版中国银刚绒项目可行性研究报告
- 2024-2030年新版中国永磁钡铁氧体项目可行性研究报告
- 2024-2030年新版中国太阳能LED花园灯项目可行性研究报告
- 2024年快运公司居间业务合同
- 2024-2030年全球及中国阻燃纤维行业发展态势及供需前景预测报告
- 2024-2030年全球及中国酿造系统行业发展动态及应用前景预测报告
- 2024-2030年全球及中国薄荷酒杯行业销售策略及盈利前景预测报告
- 正弦交流电路相量
- 长沙市某办公建筑的冰蓄冷空调系统的设计毕业设计
- 不抱怨的世界(课堂PPT)
- 企业盈利能力分析——以青岛啤酒股份有限公司为例
- 消火栓灭火器检查记录表
- 岸墙、翼墙及导水墙砼浇筑方案
- 第三章_配位化学
- 中国话-完整版PPT课件
- 缠论基本概念图解(推荐)
- 海瑞克英文翻译
- 培训师经常用到的七大培训方式及操作方法
评论
0/150
提交评论