2024届黑龙江省七台河市数学高一上期末复习检测模拟试题含解析_第1页
2024届黑龙江省七台河市数学高一上期末复习检测模拟试题含解析_第2页
2024届黑龙江省七台河市数学高一上期末复习检测模拟试题含解析_第3页
2024届黑龙江省七台河市数学高一上期末复习检测模拟试题含解析_第4页
2024届黑龙江省七台河市数学高一上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省七台河市数学高一上期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数的零点所在区间是()A. B.C. D.2.已知函数,若(其中.),则的最小值为()A. B.C.2 D.43.已知函数在区间上单调递增,若成立,则实数的取值范围是()A. B.C. D.4.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若.则()A. B.C.2 D.5.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.6.已知集合,则A B.C. D.7.已知,,且,则的最小值为()A.2 B.3C.4 D.88.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.249.若,则错误的是A. B.C. D.10.已知,点在轴上,,则点的坐标是A. B.C.或 D.11.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.512.已知集合,,则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数是定义在上的奇函数,当时的图象如下所示,那么的值域是_______14.已知函数,则___________..15.已知函数则不等式的解集是_____________16.已知,且,则的值为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.计算下列各式的值:(1);(2).18.若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.(1)研究并证明函数在区间上的单调性;(2)若实数满足不等式,求实数的取值范围.19.已知集合,(Ⅰ)当时,求;;(Ⅱ)若,求实数的值20.已知幂函数的图象经过点(1)求的解析式;(2)设,(i)利用定义证明函数在区间上单调递增(ii)若在上恒成立,求t的取值范围21.如图,已知是半径为圆心角为的扇形,是该扇形弧上的动点,是扇形的内接矩形,记为.(1)若的周长为,求的值;(2)求的最大值,并求此时的值.22.已知函数的图象在定义域上连续不断.若存在常数,使得对于任意的,恒成立,称函数满足性质.(1)若满足性质,且,求的值;(2)若,试说明至少存在两个不等的正数,同时使得函数满足性质和.(参考数据:)(3)若函数满足性质,求证:函数存在零点.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】判断函数的单调性,根据函数零点存在性定理即可判断.【详解】函数的定义域为,且函数在上单调递减;在上单调递减,所以函数为定义在上的连续减函数,又当时,,当时,,两函数值异号,所以函数的零点所在区间是,故选:B.2、B【解析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B3、A【解析】由增函数的性质及定义域得对数不等式组,再对数函数性质可求解【详解】不等式即为,∵函数在区间上单调递增,∴,即,解得,∴实数的取值范围是,选A【点睛】本题考查函数的单调性应用,考查解函数不等式,解题时除用函数的单调性得出不等关系外,一定要注意函数的定义域的约束,否则易出错4、A【解析】由已知、同角三角函数关系、辅助角公式及诱导公式可得解.【详解】由得,∴.故选:A.5、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题6、C【解析】分析:先解指数不等式得集合A,再根据偶次根式被开方数非负得集合B,最后根据补集以及交集定义求结果.详解:因为,所以,因为,所以因此,选C.点睛:合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图7、C【解析】根据条件,变形后,利用均值不等式求最值.【详解】因为,所以.因为,,所以,当且仅当,时,等号成立,故的最小值为4.故选:C8、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A9、D【解析】对于,由,则,故正确;对于,,故正确;对于,,故正确;对于,,故错误故选D10、C【解析】依题意设,根据,解得,所以选.11、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.12、B【解析】直接利用交集运算法则得到答案.【详解】,,则故选:【点睛】本题考查了交集的运算,属于简单题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】分析:通过图象可得时,函数的值域为,根据函数奇偶性的性质,确定函数的值域即可.详解:∵当时,函数单调递增,由图象知,当时,在,即此时函数也单调递增,且,∵函数是奇函数,∴,∴,即,∴的值域是,故答案为点睛:本题主要考查函数值域的求法,利用函数奇偶性的性质进行转化是解决本题的关键.14、17【解析】根据分段函数解析式计算可得;【详解】解:因为,故答案为:15、【解析】分和0的大小关系分别代入对应的解析式即可求解结论.【详解】∵函数,∴当,即时,,故;当,即时,,故;∴不等式的解集是:.故答案为:.16、【解析】根据同角的三角函数的关系,利用结合两角和的余弦公式即可求出【详解】,,,,,故答案为.【点睛】本题主要考查同角的三角函数的关系,两角和的余弦公式,属于中档题.已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值,角的变换是解题的关键三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)0.【解析】(1)直接利用根式与分数指数幂的运算法则求解即可,化简过程注意避免出现计算错误;(2)直接利用对数的运算法则求解即可,解答过程注意避免出现计算错误.【详解】(1);(2)18、(1)见解析;(2).【解析】(1)设,则,所以,根据在区间上是单调递增,可得,从而可得函数在区间上是单调递减函数;(2)先证明在区间上是单调递增的函数,根据奇偶性可得在区间上是单调递增的函数,再将变形为,可得,进而可得实数的取值范围.试题解析:(1)设,显然恒成立.设,则,,,则,所以,又在区间上是单调递增,所以,即,所以函数在区间上是单调递减函数.(2)因为是定义在实数集上的奇函数,所以,又因为在区间上是单调递增的函数,所以当时,,当时,,,所以当,有.设,则,所以,即,所以,所以在区间上是单调递增函数.综上所述,在区间上是单调递增的函数.所以由得,即所以.【方法点睛】本题主要考查函数的奇偶性的应用以及抽象函数与复合函数的单调性,属于难题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取;(2)作差;(3)判断的符号(往往先分解因式,再判断各因式的符号),可得在已知区间上是增函数,可得在已知区间上是减函数.19、(Ⅰ),(Ⅱ)m的值为8【解析】由,(Ⅰ)当m=3时,,则(Ⅱ),此时,符合题意,故实数m的值为820、(1)(2)(i)证明见解析;(ii)【解析】(1)设,然后代点求解即可;(2)利用定义证明函数在区间上单调递增即可,然后可得在上,,然后可求出t的取值范围【小问1详解】设,则,得,所以【小问2详解】(i)由(1)得任取,,且,则因为,所以,,所以,即所以函数在上单调递增(ii)由(i)知在单调递增,所以在上,因为在上恒成立,所以,解得21、(1);(2),.【解析】(1)根据周长即可求得,以及;将目标式进行转化即可求得;(2)用表示出,将其转化为关于的三角函数,求该三角函数的最大值即可求得结果.【详解】(1),,则若的周长为,则,,平方得,即,解得(舍)或.则.(2)中,,,在中,,,则因为,,当,即时,有最大值.【点睛】本题考查已知正切值求齐次式的值,以及几何图形中构造三角函数,并求三角函数最值的问题,涉及倍角公式和辅助角公式的利用,属综合中档题.22、(1)(2)答案见解析(3)证明见解析【解析】(1)由满足性质可得恒成立,取可求,取可求,取可求,取求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x,恒成立.又因为,所以,,,由可得,由可得,所以,.【小问2详解】若正数满足,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论