2024届贵州省遵义市正安一中高一上数学期末质量跟踪监视模拟试题含解析_第1页
2024届贵州省遵义市正安一中高一上数学期末质量跟踪监视模拟试题含解析_第2页
2024届贵州省遵义市正安一中高一上数学期末质量跟踪监视模拟试题含解析_第3页
2024届贵州省遵义市正安一中高一上数学期末质量跟踪监视模拟试题含解析_第4页
2024届贵州省遵义市正安一中高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省遵义市正安一中高一上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知,且满足,则值A. B.C. D.2.设是两个单位向量,且,那么它们的夹角等于()A. B.C. D.3.现对有如下观测数据345671615131417记本次测试中,两组数据的平均成绩分别为,两班学生成绩的方差分别为,,则()A., B.,C., D.,4.已知三个顶点的坐标分别为,,,则外接圆的标准方程为()A. B.C. D.5.函数f(x)=|x-2|-lnx在定义域内零点的个数为()A.0 B.1C.2 D.36.已知a,b,c∈R,a>bAa2>bC.ac>bc D.a-c>b-c7.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A. B.C. D.8.设函数的值域为R,则实数a的取值范围是()A.(-∞,1] B.[1,+∞)C.(-∞,5] D.[5,+∞)9.函数的图像大致为A. B.C. D.10.已知全集,,,则等于()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若函数的图象关于直线对称,则的最小值是________.12.函数的定义域是______13.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______14.的定义域为________________15.函数的反函数为___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,两相邻对称中心之间的距离为(1)求函数的最小正周期和的解析式.(2)求函数的单调递增区间.17.已知函数.(1)求函数的定义域;(2)若函数的最小值为,求的值.18.设S={x|x=m+n,m、n∈Z}(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个x1、x2,则x1+x2、x1·x2是否属于S?19.某大学为了解学生对两家餐厅的满意度情况,从在两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行满意指数打分(满意指数是指学生对餐厅满意度情况的打分,分数设置为分.根据打分结果按,分组,得到如图所示的频率分布直方图,其中餐厅满意指数在中有30人.(1)求餐厅满意指数频率分布直方图中的值;(2)利用样本估计总体的思想,估计餐厅满意指数和餐厅满意指数的平均数及方差(同一组中的数据用该组区间中点值作代表);参考公式:,其中为的平均数,分别为对应的频率.(3)如果一名新来同学打算从两家餐厅中选择一个用餐,你建议选择哪个餐厅?说明理由.20.已知全集,集合,集合.(1)若,求;(2)若“”是“”必要不充分条件,求实数的取值范围.21.已知函数,(a为常数,且),若(1)求a的值;(2)解不等式

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】由可求得,然后将经三角变换后用表示,于是可得所求【详解】∵,∴,解得或∵,∴∴故选C【点睛】对于给值求值的问题,解答时注意将条件和所求值的式子进行适当的化简,然后合理地运用条件达到求解的目的,解题的关键进行三角恒等变换,考查变换转化能力和运算能力2、C【解析】由条件两边平方可得,代入夹角公式即可得到结果.【详解】由,可得:,又是两个单位向量,∴∴∴它们的夹角等于故选C【点睛】本题考查单位向量的概念,向量数量积的运算及其计算公式,向量夹角余弦的计算公式,以及已知三角函数求角,清楚向量夹角的范围3、C【解析】利用平均数以及方差的计算公式即可求解.【详解】,,,,故,故选:C【点睛】本题考查了平均数与方差,需熟记公式,属于基础题.4、C【解析】先判断出是直角三角形,直接求出圆心和半径,即可求解.【详解】因为三个顶点的坐标分别为,,,所以,所以,所以是直角三角形,所以的外接圆是以线段为直径的圆,所以圆心坐标为,半径故所求圆的标准方程为故选:C5、C【解析】分别画出函数y=lnx(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.6、D【解析】对A,B,C,利用特殊值即可判断,对D,利用不等式的性质即可判断.【详解】对A,令a=1,b=-2,此时满足a>b,但a2<b对B,令a=1,b=-2,此时满足a>b,但1a>1对C,若c=0,a>b,则ac=bc,故C错;对D,∵a>b∴a-c>b-c,故D正确.故选:D.7、B【解析】根据集合交集的定义可得所求结果【详解】∵,∴故选B【点睛】本题考查集合的交集运算,解题的关键是弄清两集合交集中元素的特征,进而得到所求集合,属于基础题8、B【解析】分段函数中,根据对数函数分支y=log2x的值域在(1,+∞),而函数的值域为R,可知二次函数y=-x2+a的最大值大于等于1,即可求得a的范围【详解】x>2时,y=log2x>1∴要使函数的值域为R,则y=-x2+a在x≤2上的最大值a大于等于1即,a≥1故选:B【点睛】本题考查了对数函数的值域,由函数的值域及所得对数函数的值域,判断二次函数的的值域范围进而求参数范围9、A【解析】详解】由得,故函数的定义域为又,所以函数为奇函数,排除B又当时,;当时,.排除C,D.选A10、D【解析】利用补集和并集的定义即可得解.【详解】,,,,,.故选:D.【点睛】本题主要考查集合的基本运算,熟练掌握补集和并集的定义是解决本题的关键,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据正弦函数图象的对称性求解.【详解】依题意可知,得,所以,故当时,取得最小值.故答案为:.【点睛】本题考查三角函数的对称性.正弦函数的对称轴方程是,对称中心是12、【解析】,即定义域为点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)13、【解析】由题得几何体为圆锥的,根据三视图的数据计算体积即可【详解】由三视图可知几何体为圆锥的,圆锥的底面半径为2,母线长为4,∴圆锥的高为∴V=×π×22×=故答案为【点睛】本题主要考查了圆锥的三视图和体积计算,属于基础题14、【解析】由分子根式内部的代数式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定义域为考点:函数的定义域及其求法.15、【解析】由题设可得,即可得反函数.【详解】由,可得,∴反函数为.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),(2)【解析】(1)根据相邻对称中心之间间隔可求得最小正周期和,由此可得解析式;(2)令,解不等式即可得到所求单调递增区间.小问1详解】两相邻对称中心之间的距离为,的最小正周期,,解得:,;【小问2详解】令,解得:,的单调递增区间为.17、(1);(2).【解析】(1)由即可求解;(2)先整理,利用复合函数单调性即可求出的最小值,令最小值等于4解方程即可.【详解】(1)若有意义,则,解得,故的定义域为;(2)由于令,则∵时,在上是减函数,∴又,则,即,解得或(舍)故若函数的最小值为,则.【点睛】关键点点睛:本题在解题的过程中要注意定义域,关键在于的范围和的单调性.18、(1)见解析;(2)见解析.【解析】(1)由a=a+0×即可判断;(2)不妨设x1=m+n,x2=p+q,经过运算得x1+x2=(m+n)+(p+q),x1·x2=(mp+2nq)+(mq+np),即可判断.试题解析:(1)a是集合S的元素,因为a=a+0×∈S(2)不妨设x1=m+n,x2=p+q,m、n、p、q∈Z则x1+x2=(m+n)+(p+q)=(m+n)+(p+q),∵m、n、p、q∈Z.∴p+q∈Z,m+n∈Z.∴x1+x2∈S,x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m、n、p、q∈Z故mp+2nq∈Z,mq+np∈Z∴x1·x2∈S综上,x1+x2、x1·x2都属于S点睛:集合是高考中必考的知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错19、(1),(2)餐厅满意指数的平均数和方差分别为,;餐厅满意指数的平均数和方差分别为,(3)答案见解析【解析】(1)根据频率的含义和性质列方程,即可解得:,;(2)根据平均数和方差的定义,然后运算即可;(3)平均数和方差在实际生活中的应用,平均满意度越高,就越会受到欢迎.【小问1详解】因为餐厅满意指数在中有30人,则有:解得:根据总的频率和为1,则有:解得:综上可得:,【小问2详解】设餐厅满意指数的平均数和方差分别为餐厅满意指数的平均数和方差分别为,则有:,,,,综上可得:餐厅满意指数的平均数和方差分别为,;餐厅满意指数的平均数和方差分别,【小问3详解】答案一:餐厅满意指数的平均数为,方差为,餐厅满意指数的平均数为,方差为,因为,所以推荐餐厅;答案二:餐厅满意指数在的频率为,在的频率为,餐厅满意指数在和的频率都为,所以推荐餐厅;(答案不唯一,符合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论