广东省佛山市南海区2023-2024学年高二上学期“升基工程”学业水平监测数学试题(无答案)_第1页
广东省佛山市南海区2023-2024学年高二上学期“升基工程”学业水平监测数学试题(无答案)_第2页
广东省佛山市南海区2023-2024学年高二上学期“升基工程”学业水平监测数学试题(无答案)_第3页
广东省佛山市南海区2023-2024学年高二上学期“升基工程”学业水平监测数学试题(无答案)_第4页
广东省佛山市南海区2023-2024学年高二上学期“升基工程”学业水平监测数学试题(无答案)_第5页
已阅读5页,还剩1页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南海区2025届高二级“升基工程”学业水平监测数学试卷本试卷共4页,22题,满分150分,考试用时120分钟.注意事项:1.答卷前、考生务必填写答题卡上的有关项目。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线的方程为,则该直线的倾斜角为()A.B.C.D.2.甲、乙两人独立破译一份密码文件,已知甲、乙能破译的概率分别是,则甲、乙恰有一人成功破译这份文件的概率是()A.B.C.D.3.圆上的点到直线的距离的最小值是()A.6B.5C.4D.14.已知三棱锥分别是的中点,是的中点,设,则()A.B.C.D.5.点关于直线对称的点的坐标为()A.B.C.D.6.下面的三个游戏都是在袋子中装球,然后从袋子中不放回地取球,分别计算三个游戏中甲获胜的概率,其中游戏公平的是()游戏1游戏2游戏3袋子中球的数量和颜色1个红球和1个白球2个红球和2个白球3个红球和1个白球取球规则取1个球依次取出2个球依次取出2个球获胜规则取到红球→甲胜两个球同色→甲胜两个球同色→甲胜取到白球→乙胜两个球不同色→乙胜两个球不同色→乙胜A.游戏1和游戏3B.游戏2C.游戏1和游戏2D.游戏37.已知直线,直线,若,则与的距离为()A.B.C.D.8.如图为某种礼物降落伞的示意图,其中有8根绳子和伞面连接,每根绳子和水平面的法向量的夹角均为,已知礼物的质量为,每根绳子的拉力大小相同.求降落伞在匀速下落的过程中每根绳子拉力的大小为()(重力加速度)A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,部分选对的得5分,部分选对的得2分,有错选的得0分.9.一个人连续射击2次,则下列各事件关系中,说法正确的是()A.事件“两次均击中”与事件“至多一次击中”互为对立事件B.事件“第一次击中”与事件“第二次击中”为互斥事件C.事件“恰有一次击中”与事件“两次均击中”为互斥事件D.事件“两次均未击中”与事件“至多一次击中”互为对立事件10.已知椭圆的中心为坐标原点,焦点在轴上,短轴长等于,离心率为,过焦点作轴的垂线交椭圆于两点,则下列说法正确的是()A.椭圆的方程为B.椭圆的焦距为2C.D.的周长为11.如图,在直三棱柱中,,分别是的中点,则下列结论正确的是()A.与所成的角为B.点到直线的距离为C.与平面所成角为D.点到平面的距离为12.如图,已知正方体的棱长为分别是和的中点,点在四边形内,若,则下列结论正确的是()A.B.C.点的轨迹的长度为D.的最小值是三、填空题:本题共4小题,每小题5分,共20分.13.写出一个圆心在x轴上,半径为1的圆的标准方程________.14.抛掷一枚质地均匀的骰子,记事件“向上的点数是偶数”,事件“向上的点数超过4”,则概率________.15.已知圆与圆相交于两点.则________.16.如图,四面体的每条棱长都等于,分别是上的动点,则的最小值是________,此时________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)广东省高考目前实行“3+1+2”模式,其中“3”指的是语文、数学、外语这3门必选科目,“1”指的是考生需要在物理、历史这2门首选科目中选择1门,“2”指的是考生需要在思想政治、地理、化学、生物这4门再选科目中选择2门.已知G建筑专业选科要求是首选科目为物理,再选科目为化学、生物至少1门.(1)写出考生所有选科组合的样本空间;(2)从所有选科组合中任选一个,求该选科组合符合G建筑专业选科要求的概率。18.(12分)在如图所示的试验装置中,四边形框架为正方形,为矩形,,且它们所在的平面互相垂直,为对角线的中点,活动弹子在正方形对角线上移动.(1)若,求的值;(2)当为的中点时,求平面与平面夹角的余弦值.19.(12分)在一个质地均匀的正八面体中,八个面分别标以数字1到8,任意抛掷一次这个正八面体,观察它与地面接触的面上的数字,记事件“与地面接触的面上的数字为奇数”,事件“与地面接触的面上的数字不大于4”(1)判断事件A与B是否相互独立,若是请证明,若不是请举例说明;(2)连续抛掷3次这个正八面体,求事件只发生1次的概率.20.(12分)已知点,动点与点的距离是它与点距离的倍.(1)动点的轨迹为曲线,求的方程;(2)设直线,直线与曲线交于两点,当弦的长度取得最小值时,求弦的长度和直线的方程.21.(12分)已知平行六面体的各条棱长均为2,且有.(1)求证:平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论