2023-2024学年河南省顶尖名校高一上数学期末考试试题含解析_第1页
2023-2024学年河南省顶尖名校高一上数学期末考试试题含解析_第2页
2023-2024学年河南省顶尖名校高一上数学期末考试试题含解析_第3页
2023-2024学年河南省顶尖名校高一上数学期末考试试题含解析_第4页
2023-2024学年河南省顶尖名校高一上数学期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省顶尖名校高一上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.,,的大小关系是()A. B.C. D.2.在长方体中,,则异面直线与所成角的大小是A. B.C. D.3.A. B.C. D.4.函数的定义域为A B.C. D.5.函数的图象可能是()A. B.C. D.6.如果且,那么直线不经过()A第一象限 B.第二象限C.第三象限 D.第四象限7.如图,在正三棱锥中,,点为棱的中点,则异面直线与所成角的大小为()A.30° B.45°C.60° D.90°8.若直线的倾斜角为,且经过点,则直线的方程是A. B.C. D.9.函数的一部分图像如图所示,则()A. B.C. D.10.如图,正方体的棱长为,,是线段上的两个动点,且,则下列结论错误的是A.B.直线、所成的角为定值C.∥平面D.三棱锥的体积为定值二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边过点,求_________________.12.已知关于的方程在有解,则的取值范围是________13.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________.14.有关数据显示,2015年我国快递行业产生的包装垃圾约为400万吨.有专家预测,如果不采取措施,快递行业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从___________年(填年份)开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:,)15.的单调增区间为________.16.的值等于____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知圆M过点P(10,4),且与直线4x+3y-20=0相切于点A(2,4)(1)求圆M的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且,求直线l的方程;18.人口问题是世界普遍关注的问题,通过对若干个大城市的统计分析,针对人口密度分布进行模拟研究,发现人口密度与到城市中心的距离之间呈现负指数关系.指数模型是经典的城市人口密度空间分布的模型之一,该模型的计算是基于圈层距离法获取距城市中心距离和人口密度数据的,具体而言就是以某市中心位置为圆心,以不同的距离为半径划分圈层,测量和分析不同圈层中的人口状况.其中x是圈层序号,将圈层序号是x的区域称为“x环”(时,1环表示距离城市中心0~3公里的圈层;时,2环表示距离城市中心3~6公里的圈层;以此类推);是城市中心的人口密度(单位:万人/平方公里),为x环的人口密度(单位:万人/平方公里);b为常数;.下表为某市2006年和2016年人口分布的相关数据:年份b20062.20.1320162.30.10(1)求该市2006年2环处的人口密度(参考数据:,结果保留一位小数);(2)2016年该市某环处的人口密度为市中心人口密度的,求该环是这个城市的多少环.(参考数据:)19.已知是定义在上的偶函数,当时,(1)求;(2)求的解析式;(3)若,求实数a的取值范围20.已知点,,动点P满足若点P为曲线C,求此曲线的方程;已知直线l在两坐标轴上的截距相等,且与中的曲线C只有一个公共点,求直线l的方程21.如图所示,矩形所在平面,分别是的中点.(1)求证:平面.(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】作出弧度角的正弦线、余弦线和正切线,利用三角函数线来得出、、的大小关系.【详解】作出弧度角的正弦线、余弦线和正切线如下图所示,则,,,其中虚线表示的是角的终边,,则,即.故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题.2、C【解析】连接为异面直线与所成角,几何体是长方体,是,,异面直线与所成角的大小是,故选C.3、A【解析】,选A.4、C【解析】要使得有意义,要满足真数大于0,且分母不能为0,即可求出定义域.【详解】要使得有意义,则要满足,解得.答案为C.【点睛】常见的定义域求解要满足:(1)分式:分母0;(2)偶次根式:被开方数0;(3)0次幂:底数0;(4)对数式:真数,底数且;(5):;5、C【解析】令,可判断出g(x)的图象就是将h(x)的图象向上平移一个单位,由图像的对称性即可得到答案.【详解】令则,即g(x)的图象就是将h(x)的图象向上平移一个单位即可.因为h(-x)=f(-x)-f(x)=-h(x),即函数h(x)为奇函数,图象关于原点对称,所以的图象关于(0,1)对称.故选:C6、C【解析】由条件可得直线的斜率的正负,直线在轴上的截距的正负,进而可得直线不经过的象限【详解】解:由且,可得直线斜率为,直线在y轴上的截距,故直线不经过第三象限,故选C【点睛】本题主要考查确定直线位置的几何要素,属于基础题7、C【解析】取BC的中点E,∠DFE即为所求,结合条件即求.【详解】如图取BC的中点E,连接EF,DE,则EF∥AB,∠DFE即为所求,设,在正三棱锥中,,故,∴,∴,即异面直线与所成角的大小为.故选:C.8、B【解析】直线l的斜率等于tan45°=1,由点斜式求得直线l的方程为y-0=,即故选:B9、D【解析】由图可知,,排除选项,由,排除选项,故选.10、B【解析】在A中,∵正方体∴AC⊥BD,AC⊥,∵BD∩=B,∴AC⊥平面,∵BF⊂平面,∴AC⊥BF,故A正确;在B中,异面直线AE、BF所成的角不为定值,因为当F与重合时,令上底面顶点为O,点E与O重合,则此时两异面直线所成的角是;当E与重合时,此时点F与O重合,则两异面直线所成的角是,此二角不相等,故异面直线AE、BF所成的角不为定值.故B错误在C中,∵EF∥BD,BD⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD,故C正确;在D中,∵AC⊥平面,∴A到平面BEF的距离不变,∵B到EF的距离为1,,∴△BEF的面积不变,∴三棱锥A-BEF的体积为定值,故D正确;点睛:解决此类题型的关键是结合空间点线面的位置关系一一检验.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.12、【解析】将原式化为,然后研究函数在上的值域即可【详解】解:由,得,令,令,因为,所以,所以,即,因为,所以函数可化为,该函数在上单调递增,所以,所以,所以,所以的取值范围是,故答案为:13、【解析】首先利用图像作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解.【详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图:由正四面体的性质可知,为底面正三角形的中心,从而,,∵为的中点,为正三角形,所以,,所以为正四面体相邻两个面所成角∵,∴易得,,∵平面,平面,∴,故.故答案为:.14、2021【解析】根据条件列指数函数,再解指数不等式得结果.【详解】设快递行业产生的包装垃圾为万吨,表示从2015年开始增加的年份数,由题意可得,,得,两边取对数可得,∴,得,解得,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为:202115、【解析】求出给定函数的定义域,由对数函数、正弦函数单调性结合复合函数单调性求解作答.【详解】依题意,,则,解得,函数中,由得,即函数在上单调递增,当时,函数在上单调递增,又函数在上单调递增,所以函数的单调增区间为.故答案为:【点睛】关键点睛:函数的单调区间是定义域的子区间,求函数的单调区间,正确求出函数的定义域是解决问题的关键.16、2【解析】利用诱导公式、降次公式进行化简求值.【详解】.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)2x-y+5=0或2x-y-15=0.【解析】(1)由题意得到圆心M(6,7),半径,进而得到圆的方程;(2)直线l∥OA,所以直线l的斜率为,根据点线距和垂径定理得到解得m=5或m=-15,进而得到方程.解析:(1)过点A(2,4)且与直线4x+3y-20=0垂直的直线方程为3x-4y+10=0①AP的垂直平分线方程为x=6②由①②联立得圆心M(6,7),半径圆M的方程为(2)因为直线l∥OA,所以直线l的斜率为.设直线l的方程为y=2x+m,即2x-y+m=0则圆心M到直线l的距离因为而所以,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.18、(1)1.7(2)4【解析】(2)根据表中数据,由求解;(2)根据2016年该市某环处的人口密度为市中心人口密度的,由求解.【小问1详解】解:由表中数据得:;【小问2详解】因为2016年该市某环处的人口密度为市中心人口密度的,所以,即,所以,解得,所以该环是这个城市的4环.19、(1)2(2)(3)【解析】(1)根据偶函数这一性质将问题转化为求的值,再代入计算即可;(2)设,根据偶函数这一性质,求出另一部分的解析即可;(3)由(2)可知函数的单调性,结合单调性解不等式即可.【小问1详解】因为是偶函数,所以小问2详解】设,则,因为是定义在上的偶函数,所以当时,,所以(也可表示为【小问3详解】由及是偶函数得,由得,在上单调递增,所以由得,,解得,即a的取值范围是.20、(1)(2)或【解析】设,由动点P满足,列出方程,即可求出曲线C的方程设直线l在坐标轴上的截距为a,当时,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程与圆的方程联立方程组,根据由直线l与曲线C只有一个公共点,即可求出直线l的方程【详解】设,点,,动点P满足,整理得:,曲线C方程为设直线l的横截距为a,则直线l的纵截距也为a,当时,直线l过,设直线方程为把代入曲线C的方程,得:,,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程为,把代入曲线C的方程,得:,直线l与曲线C只有一个公共点,,解得,直线l的方程为或【点睛】本题主要考查了曲线轨迹方程的求法,以及直线与圆的位置关系的应用,其中解答中熟记直接法求轨迹的方法,以及合理使用直线与圆的位置关系是解答的关键,着重考查了推理与运算能力,以及转化思想的应用,属于基础题21、(1)见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论