




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河北省“名校联盟”数学高一上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知幂函数的图象过点,则的值为A. B.C. D.2.已知幂函数的图象过点,若,则实数的值为()A. B.C. D.43.有一组实验数据如下现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最佳的一个是()A. B.C. D.4.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}5.已知,则的最小值是()A.2 B.C.4 D.6.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.7.已知定义在R上偶函数fx满足下列条件:①fx是周期为2的周期函数;②当x∈0,1时,fx=A12 B.1C.-148.在下列四组函数中,与表示同一函数的是()A.,B.,C.,D.,9.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.10.已知,则().A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.直线被圆截得弦长的最小值为______.12.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”.计费方式如下表:每户每月用水量水价不超过12m的部分3元/m超过12m但不超过18m的部分6元/m超过18m的部分9元/m若某户居民本月交纳水费为66元,则此户居民本月用水量为____________.13.若,,则以、为根的一元二次方程可以是___________.(写出满足条件的一个一元二次方程即可)14.已知集合,则的元素个数为___________.15.函数的最大值为__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设全集,集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,求实数的取值范围.17.如图,以Ox为始边作角与,它们的终边分别与单位圆相交于P,Q两点,已知点P的坐标为(1)求的值;(2)若,求的值18.(1)若,求的值;(2)已知锐角,满足,若,求的值.19.已知的顶点、、,试求:(1)求边的中线所在直线方程;(2)求边上的高所在直线的方程.20.已知函数图象的一条对称轴方程为,且其图象上相邻两个零点的距离为.(1)求的解析式;(2)若对,不等式恒成立,求实数m的取值范围.21.如图所示,设矩形的周长为cm,把沿折叠,折过去后交于点,设cm,cm(1)建立变量与之间的函数关系式,并写出函数的定义域;(2)求的最大面积以及此时的的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】利用幂函数图象过点可以求出函数解析式,然后求出即可【详解】设幂函数的表达式为,则,解得,所以,则.故答案为B.【点睛】本题考查了幂函数,以及对数的运算,属于基础题2、D【解析】根据已知条件,推出,再根据,即可得出答案.【详解】由题意得:,解得,所以,解得:,故选:D【点睛】本题考查幂函数的解析式,属于基础题.3、C【解析】选代入四个选项的解析式中选取所得的最接近的解析式即可.【详解】对于选项A:当时,,与相差较多,当时,,与相差较多,故选项A不正确;对于选项B:当时,,与相差较多,当时,,与相差较多,故选项B不正确;对于选项C:当时,,当时,,故选项C正确;对于选项D:当时,,与相差较多,当时,,与相差较多,故选项D不正确;故选:C.4、B【解析】根据集合的补集和交集的概念得到结果即可.【详解】全集,集合,,;,故答案为B.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算5、C【解析】根据对数运算和指数运算可得,,再由以及基本不等式可得.【详解】因为,所以,所以,所以,所以,当且仅当即时,等号成立.故选:C.【点睛】本题考查了指数和对数运算,基本不等式求最值,属于中档题.6、A【解析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且7、B【解析】根据函数的周期为2和函数fx是定义在R上的偶函数,可知flog【详解】因为fx是周期为2所以flog又函数fx定义在R上的偶函数,所以又当x∈0,1时,fx=所以flog23故选:B.8、B【解析】根据题意,先看函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.【详解】对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,但是解析式不一样,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选:B.9、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C10、C【解析】将分子分母同除以,再将代入求解.【详解】.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】先求直线所过定点,根据几何关系求解【详解】,由解得所以直线过定点A(1,1),圆心C(0,0),由几何关系知当AC与直线垂直时弦长最小.弦长最小值为.故答案为:12、【解析】根据阶梯水价,结合题意进行求解即可.【详解】解:当用水量为时,水费为,而本月交纳的水费为66元,显然用水量超过,当用水量为时,水费为,而本月交纳的水费为66元,所以本月用水量不超过,即有,因此本月用水量为,故答案为:13、【解析】利用两数和的完全平方公式得到,再利用根与系数的关系写出一个满足条件的方程.【详解】因为,,所以,即该一元二次方程的两根之和为3,两根之积为2,所以以、为根的一元二次方程可以是.14、5【解析】直接求出集合A、B,再求出,即可得到答案.【详解】因为集合,集合,所以,所以的元素个数为5.故答案为:5.15、【解析】利用二倍角余弦公式,把问题转化为关于的二次函数的最值问题.【详解】,又,∴函数的最大值为.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)①;②;③.【解析】(1)将代入集合,求出集合和,然后利用交集的定义可求出集合;(2)选择①,根据得出关于实数的不等式组,解出即可;选择②,由,可得出,可得出关于实数的不等式组,解出即可;选择③,求出集合,根据可得出关于实数的不等式,解出即可.【详解】(1)当时,,,,因此,;(2),.选择①,,则或,解得或,此时,实数的取值范围是;选择②,,,则,解得,此时,实数的取值范围是;选择③,,或,解得或,此时,实数的取值范围是.综上所述,选择①,实数的取值范围是;选择②,实数的取值范围是;选择③,实数的取值范围是.【点睛】本题考查交集与补集的混合运算,同时也考查了利用集合的包含关系求参数的取值范围,考查运算求解能力,属于中等题.17、(1)(2)【解析】(1)由三角函数的定义首先求得的值,然后结合二倍角公式和同角三角函数基本关系化简求解三角函数式的值即可;(2)由题意首先求得的关系,然后结合诱导公式和两角和差正余弦公式即可求得三角函数式的值.【详解】(1)由三角函数定义得,,∴原式(2)∵,且,∴,,∴,∴【点睛】本题主要考查三角函数的定义,二倍角公式及其应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.18、(1)5;(2).【解析】(1)根据给定条件化正余的齐次式为正切,再代入计算作答.(2)根据给定条件利用差角的余弦公式求出,结合角的范围求出即可作答.【详解】(1)因,所以.(2)因,是锐角,则,,又,,因此,,,则,显然,于是得:,解得,所以的值为.19、(1);(2).【解析】(1)求出线段的中点坐标,利用两点式方程求出边上的中线所在的直线方程;(2)求出边所在直线的斜率,进而可以求出边上的高所在直线的斜率,利用点斜式求边上的高所在的直线方程【详解】解:(1)线段的中点坐标为所以边上的中线所在直线的方程是:,即;(2)由已知,则边上高的斜率是,边上的高所在直线方程是,即【点睛】本题考查直线的点斜式,两点式求直线的方程,属于基础题20、(1)(2)【解析】(1)由题意可得周期为,则可求出的值,再由一条对称轴方程为,可得,可求出的值,从而可求得解析式,(2)由题意得对恒成立,所以利用三角函数的性质求出即可,从而可求出实数m的取值范围【小问1详解】因为图象上相邻两个零点的距离为,所以周期为,所以,得,所以,因为图象的一条对称轴方程为,所以,即,所以,因为,所以,所以【小问2详解】由(1)得对恒成立,因为,所以,所以,则,所以,解得,所以实数m的取值范围为21、(1),定义域(2),的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭护理服务感染控制措施
- 城市湿地公园生态修复实施计划
- 四年级下学期美术教学目标与计划
- 石油交易保证金合同
- 物流行业销售合同执行流程
- 2025年大学统计学期末考试题库:统计推断与假设检验实际操作案例分析试题集
- 2025年高压电工实操考试题库:高压电力系统自动化技术应用试题
- 离婚协议书海外财产处理范文
- 2025年医保知识考试题库及答案:医保支付方式改革难点试题汇编
- 2025至2030年中国汽车零配件检测行业市场竞争态势及投资方向分析报告
- 幼儿园中班绘本课件-《小金鱼逃走了》
- 2023-2024学年三年级下学期综合实践活动水果拼盘教案
- 2024国家粮食和物资储备局垂直管理系事业单位招聘笔试参考题库含答案解析
- DBJ∕T15-232-2021 混凝土氯离子控制标准
- 2024年安全员C3证考试题库附答案
- GB/T 43643-2024澳洲坚果
- 公车拍卖质量保证措施
- 输配电系统的监测与控制
- 前瞻性队列研究设计方案
- Excel水力计算展示-非棱柱体渠道水面线计算 演示 (1)讲解
- 《管理学》课后习题及答案
评论
0/150
提交评论