2023-2024学年河南省安阳第三十六中学数学高一上期末综合测试试题含解析_第1页
2023-2024学年河南省安阳第三十六中学数学高一上期末综合测试试题含解析_第2页
2023-2024学年河南省安阳第三十六中学数学高一上期末综合测试试题含解析_第3页
2023-2024学年河南省安阳第三十六中学数学高一上期末综合测试试题含解析_第4页
2023-2024学年河南省安阳第三十六中学数学高一上期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省安阳第三十六中学数学高一上期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.以点为圆心,且与轴相切的圆的标准方程为()A. B.C. D.2.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则A. B.C. D.3.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减4.已知函数,下列含有函数零点的区间是()A. B.C. D.5.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.已知函数,若方程有三个不同的实数根,则实数的取值范围是A. B.C. D.7.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.8.若命题“,使得”为真命题,则实数a的取值范围是()A. B.C. D.9.函数y=|x2-1|与y=a的图象有4个交点,则实数a的取值范围是A.(0,) B.(-1,1)C.(0,1) D.(1,)10.已知函数,则()A. B.C. D.11.以下四组数中大小比较正确的是()A. B.C. D.12.函数的增区间是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若函数的定义域为[-2,2],则函数的定义域为______14.已知定义在上的函数满足:①;②在区间上单调递减;③的图象关于直线对称,则的解析式可以是________15.已知,则的值为________16.已知扇形的半径为4,圆心角为,则扇形的面积为___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数为幂函数,且为奇函数.(1)求的值,并确定的解析式;(2)令,求在的值域.18.已知函数部分图象如图所示,点为函数的图象与y轴的一个交点,点B为函数图象上的一个最高点,且点B的横坐标为,点为函数的图象与x轴的一个交点(1)求函数的解析式;(2)已知函数的值域为,求a,b的值19.定义在上的奇函数,已知当时,(1)求在上的解析式;(2)若时,不等式恒成立,求实数的取值范围20.已知集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,补充在(2)问中的横线上,并求解.若___________,求实数的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)21.已知角的终边经过点,试求:(1)tan的值;(2)的值.22.已知函数(1)求的单调递增区间;(2)画出在上的图象

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据题中条件,得到圆的半径,进而可得圆的方程.【详解】以点为圆心且与轴相切的圆的半径为,故圆的标准方程是.故选:C.2、A【解析】由三角函数定义得tan再利用同角三角函数基本关系求解即可【详解】由三角函数定义得tan,即,得3cos解得或(舍去)故选A【点睛】本题考查三角函数定义及同角三角函数基本关系式,熟记公式,准确计算是关键,是基础题3、A【解析】由可知是奇函数,排除,,且,由可知错误,故选4、C【解析】利用零点存性定理即可求解.【详解】解析:因为函数单调递增,且,,,,.且所以含有函数零点的区间为.故选:C5、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.6、A【解析】由得画出函数的图象如图所示,且当时,函数的图象以为渐近线结合图象可得当的图象与直线有三个不同的交点,故若方程有三个不同的实数根,实数的取值范围是.选A点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决,如在本题中,方程根的个数,即为直线与图象的公共点的个数;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.7、C【解析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.8、B【解析】在上有解,利用基本不等式求出的最小值即可.【详解】即在上有解,所以在上有解,由,当且仅当,即时取得等号,故故选:B9、C【解析】作函数图象,根据函数图像确定实数a的取值范围.【详解】作函数图象,根据函数图像得实数a的取值范围为(0,1),选C.【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.10、A【解析】由题中条件,推导出,,,,由此能求出的值【详解】解:函数,,,,,故选A【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题11、C【解析】结合指数函数、对数函数、幂函数性质即可求解详解】对A,,故,错误;对B,在第一象限为增函数,故,错误;对C,为增函数,故,正确;对D,,,故,错误;故选:C【点睛】本题考查根据指数函数,对数函数,幂函数性质比较大小,属于基础题12、A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】∵函数的定义域为[-2,2]∴,∴∴函数的定义域为14、(答案不唯一)【解析】取,结合二次函数的基本性质逐项验证可得结论.【详解】取,则,满足①,在区间上单调递减,满足②,的图象关于直线对称,满足③.故答案为:(答案不唯一).15、【解析】利用正弦、余弦、正切之间的商关系,分式的分子、分母同时除以即可求出分式的值.【详解】【点睛】本题考查了同角三角函数的平方和关系和商关系,考查了数学运算能力.16、【解析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积【详解】根据扇形的弧长公式可得,根据扇形的面积公式可得故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),;(2).【解析】(1)根据幂函数的定义及函数奇偶性的定义即可求解;(2)由(1),得,利用换元法得到,,再根据二次函数的性质即可求解.【小问1详解】因为函数为幂函数,所以,解得或,当时,函数是奇函数,符合题意,当时,函数是偶函数,不符合题意,综上所述,的值为,函数的解析式为.【小问2详解】由(1)知,,所以,令,则,,所以,,根据二次函数的性质知,的对称轴为,开口向上,所以在上单调递增;所以,所以函数在的值域为.18、(1)(2)或【解析】(1)根据图象可得函数的周期,利用求出,根据五点画图法求出,根据点A坐标求出A,进而得出解析式;(2)根据三角函数的性质求出的值域,由(1)知,对的取值分类讨论,列出方程组,解之即可.【小问1详解】由函数的部分图象可知,函数的周期,可得,由五点画图法可知,可得,有,又由,可得,故有函数的解析式为;【小问2详解】由(1)知,函数的值域为①当时,解得;②当时,解得由上知或19、(1);(2)【解析】(1)由函数是奇函数,求得,再结合函数的奇偶性,即可求解函数在上的解析式;(2)把,不等式恒成立,转化为,构造新函数,结合基本初等函数的性质,求得函数的最值,即可求解【详解】解:(1)由题意,函数是定义在上的奇函数,所以,解得,又由当时,,当时,则,可得,又是奇函数,所以,所以当时,(2)因为,恒成立,即在恒成立,可得在时恒成立,因为,所以,设函数,根据基本初等函数的性质,可得函数在上单调递减,因为时,所以函数的最大值为,所以,即实数的取值范围是【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,以及函数的恒成立问题的求解,其中解答中熟记函数的奇偶性,以及利用分离参数,结合函数的最值求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题20、(1)(2)选①或.选②③或.【解析】(1)分别求出两个集合,再根据并集的运算即可得解;(2)选①,根据,得,分和两种情况讨论即可得解.选②,根据,得,分和两种情况讨论即可得解.选③,根据,分和两种情况讨论即可得解.【小问1详解】解:当时,,,所以;【小问2详解】解:选①,因为,所以,当时,,解得;当时,因为,所以,解得,综上所述,或.选②,因为,所以,或,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.选③,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.21、(1);(2).【解析】(1)根据特殊角的三角函数值,结合正切函数的定义进行求解即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论