2023-2024学年甘肃省金昌市永昌四中高一上数学期末监测模拟试题含解析_第1页
2023-2024学年甘肃省金昌市永昌四中高一上数学期末监测模拟试题含解析_第2页
2023-2024学年甘肃省金昌市永昌四中高一上数学期末监测模拟试题含解析_第3页
2023-2024学年甘肃省金昌市永昌四中高一上数学期末监测模拟试题含解析_第4页
2023-2024学年甘肃省金昌市永昌四中高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年甘肃省金昌市永昌四中高一上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-42.设且,若对恒成立,则a的取值范围是()A. B.C. D.3.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.4.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A. B.8C.6 D.5.设,表示两条直线,,表示两个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则6.已知与分别是函数与的零点,则的值为A. B.C.4 D.57.已知函数在上是增函数,则的取值范围是()A. B.C. D.8.缪天荣,浙江人,著名眼科专家、我国眼视光学的开拓者.上世纪年代,我国使用“国际标准视力表”检测视力,采用“小数记录法”记录视力数据,缪天荣发现其中存在不少缺陷.经过年苦心研究,年,他成功研制出“对数视力表”及“分记录法”.这是一种既符合视力生理又便于统计和计算的视力检测系统,使中国的眼视光学研究站在了世界的巅峰.“分记录法”将视力和视角(单位:)设定为对数关系:.如图,标准对数视力表中最大视标的视角为,则对应的视力为.若小明能看清的某行视标的大小是最大视标的(相应的视角为),取,则其视力用“分记录法”记录()A. B.C. D.9.设函数对任意的,都有,,且当时,,则()A. B.C. D.10.已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为A.1 B.2C.3 D.411.()A. B.C. D.12.已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数f(x)是定义在R上的奇函数,当时,,则函数的零点个数为______14.已知直线经过点,且与直线平行,则直线的方程为__________15.在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号)①平均数;②标准差;③平均数且极差小于或等于2;④平均数且标准差;⑤众数等于1且极差小于或等于416.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限角,且,则;④是函数的一条对称轴方程以上命题是真命题的是_______(填写序号)三、解答题(本大题共6小题,共70分)17.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.18.解下列关于的不等式;(1);(2).19.已知函数f(x)=sinxcosx−cos2x+m的最大值为1.(1)求m的值;(2)求当x[0,]时f(x)的取值范围;(3)求使得f(x)≥成立的x的取值集合.20.通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中)经过实验分析得知:(1)讲课开始后第5分钟与讲课开始后第25分钟比较,何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道比较难的数学题,需要讲解25分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?21.已知函数的图象的对称中心到对称轴的最小距离为.(1)求函数的解析式,并写出的单调区间;(2)求函数在区间上的最小值和最大值以及相对应的x值.22.已知数列的前n项和为(1)求;(2)若,求数列的前项的和

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】令,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.2、C【解析】分,,作与的图象分析可得.【详解】当时,由函数与的图象可知不满足题意;当时,函数单调递减,由图知,要使对恒成立,只需满足,得.故选:C注意事项:

用黑色墨水的钢笔或签字笔将答案写在答题卡上.

本卷共9题,共60分.3、B【解析】由题可得函数为减函数,根据单调性可求解参数的范围.【详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B4、B【解析】根据斜二测画法得出原图形四边形的性质,然后可计算周长【详解】由题意,所以原平面图形四边形中,,,,所以,所以四边形的周长为:故选:B5、D【解析】对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.6、D【解析】设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立方程得,由中点坐标公式得:,又,故得解【详解】解:由,化简得,设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立得;,由中点坐标公式得:,所以,故选D【点睛】本题考查了反函数、中点坐标公式及函数的零点等知识,属于难题.7、C【解析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围【详解】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C【点睛】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键8、C【解析】将代入,求出的值,即可得解.【详解】将代入函数解析式可得.故选:C.9、A【解析】由和可得函数的周期,再利用周期可得答案.【详解】由得,所以,即,所以的周期为4,,由得,所以故选:A.10、B【解析】由题意可得,故中元素的个数为2,所以选B.【名师点睛】集合基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图11、D【解析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果.【详解】因为.故选:D.12、B【解析】设,直线的斜率为,直线的斜率为.有直线的斜率与直线的斜率的差是1,所以.通分得:,整理得:.故选B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程二、填空题(本大题共4小题,共20分)13、10【解析】将原函数的零点转化为方程或的根,再作出函数y=f(x)的图象,借助图象即可判断作答.【详解】函数的零点即方程的根,亦即或的根,画出函数y=f(x)的图象和直线,如图所示,观察图象得:函数y=f(x)的图象与x轴,直线各有5个交点,则方程有5个根,方程也有5个根,所以函数的零点有10个.故答案为:1014、【解析】设与直线平行的直线,将点代入得.即所求方程为15、③⑤【解析】按照平均数、极差、方差依次分析各序号即可.【详解】连续7天新增病例数:0,0,0,0,2,6,6,平均数是2<3,①错;连续7天新增病例数:6,6,6,6,6,6,6,标准差是0<2,②错;平均数且极差小于或等于2,单日最多增加4人,若有一日增加5人,其他天最少增加3人,不满足平均数,所以单日最多增加4人,③对;连续7天新增病例数:0,3,3,3,3,3,6,平均数是3且标准差小于2,④错;众数等于1且极差小于或等于4,最大数不会超过5,⑤对.故答案为:③⑤.16、②④【解析】根据三角函数的性质,依次分析各选项即可得答案.【详解】解:①因为,故不存在实数,使得成立,错误;②函数,由于是偶函数,故是偶函数,正确;③若,均为第一象限角,显然,故错误;④当时,,由于是函数的一条对称轴,故是函数的一条对称轴方程,正确.故正确的命题是:②④故答案为:②④三、解答题(本大题共6小题,共70分)17、(1)见解析(2)【解析】(1)利用向量的加法求出,据此,结合,可以得到与的关系;(2)根据题意可得,再结合的夹角为,且,即可得到关于的方程,求解即可.试题解析:(1)即共线,有公共点三点共线.(2)且解得18、(1)(2)【解析】(1)根据一元二次不等式的解法即可得出答案;(1)根据一元二次不等式的解法即可得出答案.【小问1详解】解:不等式可化为,解得,所以不等式的解集为;【小问2详解】解:不等式可化为,解得或,所以不等式的解集为.19、(1)(2)(3)【解析】(1)将函数f(x)=sinxcosx−cos2x+m化为只含有一个三角函数的形式,根据三角函数的性质求其最大值,可得答案;(2)根据x[0,],求出的范围,根据三角函数性质,求得答案;(3)根据f(x)≥,利用三角函数的性质,即可求得答案.【小问1详解】由题意可知,函数的最大值,解得【小问2详解】由(1)可知,当时,,,所以,所以当时的取值范围是【小问3详解】因为,则,所以,所以,所以的解集是20、(1)讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中(2)讲课开始10分钟,学生的注意力最集中,能持续10分钟(3)不能【解析】(1)分别求出比较即可;(2)由单调性得出最大值,从而得出学生的注意力最集中所持续的时间;(3)由的解,结合的单调性求解即可.【小问1详解】因为,所以讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中【小问2详解】当时,是増函数,且当时,是减函数,且所以讲课开始10分钟,学生的注意力最集中,能持续10分钟【小问3详解】当时,令,则当时,令,则则学生注意力在180以上所持续的时间为所以老师不能在学生达到所需要的状态下讲授完这道题21、(1),增区间为,,减区间为,;(2)最小值为,此时;最大值为,此时.【解析】(1)根据题意求得的最小正周期,即可求得与解析式,再求函数单调区间即可;(2)根据(1)中所求,可得在区间的单调性,结合单调性,即可求得函数的最值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论