版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省株洲市7校高一数学第一学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④2.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④3.若函数f(x)=2x+3x+a在区间(0,1)A.(-∞,-5)C.(0,5) D.(1,+4.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A. B.C. D.5.已知,,,则,,三者的大小关系是()A. B.C. D.6.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.7.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或8.已知集合A=,B=,那么集合A∩B等于()A. B.C. D.9.函数的定义域是()A.(-2,] B.(-2,)C.(-2,+∞) D.(,+∞)10.函数的零点所在的区间为()A.(,1) B.(1,2)C. D.11.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}12.已知函数,若方程有三个不同的实数根,则实数的取值范围是A. B.C. D.二、填空题(本大题共4小题,共20分)13.函数的定义域为____14.幂函数的图象经过点,则________15.已知定义在上的偶函数在上递减,且,则不等式的解集为__________16.若的最小正周期为,则的最小正周期为______三、解答题(本大题共6小题,共70分)17.如图1,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图2,某摩天轮最高点距离地面高度为110m,转盘直径为100m,设置有48个座舱,开启时按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周需要30.(1)求游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度;(2)以轴心为原点,与地面平行的直线为轴,所在的直线为轴建立直角坐标系,游客甲坐上摩天轮的座舱,开始转动后距离地面的高度为m,求在转动一周的过程中,关于的函数解析式;(3)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差(单位:m)关于的函数解析式,并求高度差的最大值(结果精确到0.1m).参考公式:.参考数据:,18.已知函数为上奇函数(1)求实数的值;(2)若不等式对任意恒成立,求实数的最小值19.已知(1)设,求t的最大值与最小值;(2)求的值域20.北京冬奥会计划于2022年2月4日开幕,随着冬奥会的临近,中国冰雪运动也快速发展,民众参与冰雪运动的热情不断高涨盛会的举行,不仅带动冰雪活动,更推动冰雪产业快速发展某冰雪产业器材厂商,生产某种产品的年固定成本为200万元,每生产千件,需另投入成本为(万元),其中与之间的关系为:通过市场分析,当每千件件产品售价为40万元时,该厂年内生产的商品能全部销售完若将产品单价定为400元(1)写出年利润(万元)关于年产量(千件)的函数解析式(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?21.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?22.设函数(且,)(1)若是定义在R上的偶函数,求实数k的值;(2)若,对任意的,不等式恒成立,求实数a的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D2、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题3、B【解析】利用零点存在性定理知f(0)⋅f(1)<0,代入解不等式即可得解.【详解】函数f(x)=2x+3x+a由零点存在性定理知f(0)⋅f(1)<0,即1+a5+a<0所以实数a的取值范围是(-5,-1)故选:B4、B【解析】得到的偶函数解析式为,显然【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.5、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C6、D【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.7、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.8、C【解析】根据集合的交运算即可求解.【详解】因为A=,B=,所以故选:C9、B【解析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解【详解】解:由,解得函数的定义域是故选:B【点睛】本题考查函数的定义域及其求法,属于基础题10、D【解析】为定义域内的单调递增函数,计算选项中各个变量的函数值,判断在正负,即可求出零点所在区间.【详解】解:在上为单调递增函数,又,所以的零点所在的区间为.故选:D.11、B【解析】分析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.12、A【解析】由得画出函数的图象如图所示,且当时,函数的图象以为渐近线结合图象可得当的图象与直线有三个不同的交点,故若方程有三个不同的实数根,实数的取值范围是.选A点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决,如在本题中,方程根的个数,即为直线与图象的公共点的个数;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.二、填空题(本大题共4小题,共20分)13、【解析】本题首先可以通过分式的分母不能为以及根式的被开方数大于等于来列出不等式组,然后通过计算得出结果【详解】由题意可知,解得或者,故定义域为【点睛】本题考查函数的定义域的相关性质,主要考查函数定义域的判断,考查计算能力,考查方程思想,是简单题14、【解析】设幂函数的解析式,然后代入求解析式,计算.【详解】设,则,解得,所以,得故答案为:15、【解析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理16、【解析】先由的最小正周期,求出的值,再由的最小正周期公式求的最小正周期.【详解】的最小正周期为,即,则所以的最小正周期为故答案为:三、解答题(本大题共6小题,共70分)17、(1)m;(2);(3),;m【解析】(1)设时,游客甲位于,得到以为始边的角,即初相,再利用周期性和最值得到函数的解析式,令求解即可.(2)由(1)的求解过程即可得出答案.(3)甲、乙两人的位置分别用点、表示,则,分别求出后甲和乙距离地面的高度,从而求出高度差,再利用已知条件给出的参考公式进行化简变形,利用三角函数的有界性进行分析求解即可.【详解】(1)设时,游客甲位于,得到以为始边的角为,根据摩天轮转一周需要30,可知座舱转动的速度约为,由题意可得,,(),当时,,所以游客甲坐在摩天轮的座舱后,开始转到10后距离地面的高度为米.(2)由(1)可得,,;(3)如图,甲、乙两人的位置分别用点、表示,则,经过后,甲距离地面的高度为,点相对于始终落后,此时乙距离地面的高度,则甲、乙高度差为,利用,可得,,当或,即或,所以的最大值为米,所以甲、乙两人距离地面的高度差的最大值约为米.18、(1);(2)【解析】(1)由奇函数得到,再由多项式相等可得;(2)由是奇函数和已知得到,再利用是上的单调增函数得到对任意恒成立.利用参数分离得对任意恒成立,再求,上最大值可得答案【详解】(1)因为函数为上的奇函数,所以对任意成立,即对任意成立,所以,所以(2)由得,因为函数为上的奇函数,所以由(1)得,是上的单调增函数,故对任意恒成立所以对任意恒成立因为,令,由,得,即所以的最大值为,故,即的最小值为【点睛】本题考查了函数的性质,不等式恒成立的问题,第二问的关键点是根据函数的为单调递增函数,得到,再利用参数分离后求的最大值,考查了学生分析问题、解决问题的能力.19、(1),;(2)[3,4].【解析】(1)利用对数函数的单调性即得;(2)换元后结合二次函数的性质可得函数在上单调递增,即求.【小问1详解】因为函数在区间[2,4]上是单调递增的,所以当时,,当时,【小问2详解】令,则,由(1)得,因为函数在上是单调增函数,所以当,即时,;当,即时,,故的值域为.20、(1)(2)72【解析】(1)由题意可得,当且时,,当且时,,从而可求得结果,(2)根据已知条件,结合二次函数的性质,以及基本不等式即可求得答案【小问1详解】由题意得,当且时,,当且时,,所以小问2详解】当当且时,,所以当时,,当且时,,当且仅当,即时取等号,综上,该厂年产量为72千件时,该厂在这一商品的生产中所获利润最大21、(1)400;(2)不能获利,至少需要补贴35000元.【解析】(1)每月每吨的平均处理成本为,利用基本不等式求解即得最低成本;(2)写出该单位每月的获利f(x)关于x的函数,整理并利用二次函数的单调性求出最值即可作答.【小问1详解】由题意可知:,每吨二氧化碳的平均处理成本为:,当且仅当,即时,等号成立,∴该
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国手机镜头行业并购重组扩张战略制定与实施研究报告
- 2025-2030年中国LED 驱动芯片行业营销创新战略制定与实施研究报告
- 2025-2030年中国北斗卫星手表行业商业模式创新战略制定与实施研究报告
- 2025-2030年中国中餐行业开拓第二增长曲线战略制定与实施研究报告
- 市政道路竣工验收质量评估报告-定稿
- 建设项目环境保护设施竣工验收程序及说明-(空白表)
- 者楼镇高洛小学文明礼仪实施方案
- 化纤高档服装项目可行性研究报告
- 医疗器械定期风险评价报告范文
- 2022-2027年中国血管舒缓素行业发展监测及投资战略咨询报告
- 小学六年级数学100道题解分数方程
- 安全管理流程图加强完善版
- 第一讲-研发创新型企业需要IPD(下)徐骥课程-
- 2022年08月北京外交学院非事业编科研助理招聘14人高频考点卷叁(3套)答案详解篇
- 甲状腺结节的超声规范化诊断教学课件
- 职业健康监护技术规范
- 安徽省白酒生产企业名录395家
- 多媒体技术与应用ppt课件(完整版)
- 2022年五年级数学兴趣小组活动记录
- 阅读题赊小鸡
- 钢管购销合同
评论
0/150
提交评论