




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省金陵中学高一数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.将函数的图象向左平移个单位后,所得图象对应的函数是()A. B.C. D.2.在四面体中,已知棱的长为,其余各棱长都为1,则二面角的平面角的余弦值为()A. B.C. D.3.下列函数中,以为最小正周期,且在上单调递增的是()A. B.C. D.4.已知,则的最小值为().A.9 B.C.5 D.5.设函数的定义域为.则“在上严格递增”是“在上严格递增”的()条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要6.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.47.如图:在正方体中,设直线与平面所成角为,二面角的大小为,则为A. B.C. D.8.已知函数幂函数,且在其定义域内为单调函数,则实数()A. B.C.或 D.9.已知函数,现有下列四个结论:①对于任意实数a,的图象为轴对称图形;②对于任意实数a,在上单调递增;③当时,恒成立;④存在实数a,使得关于x的不等式的解集为其中所有正确结论的序号是()A.①② B.③④C.②③④ D.①②④10.下列各式正确是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数的图象如图所示,则函数的解析式为__________.12.已知向量的夹角为,,则__________.13.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.14.当时x≠0时的最小值是____.15.______________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知点及圆.(1)若直线过点且与圆心的距离为1,求直线的方程;(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由17.(1)求值:;(2)已知,,试用表示.18.等腰直角三角形中,,为的中点,正方形与三角形所在的平面互相垂直(Ⅰ)求证:平面;(Ⅱ)若,求点到平面的距离19.汽车智能辅助驾驶已开始得到应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并集合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为,,,,如下图所示.当车速为(米/秒),且时,通过大数据统计分析得到下表给出的数据(其中系数随地面湿滑程度等路面情况而变化,)阶段0.准备1.人的反应2.系统反应3.制动时间秒秒距离米米(1)请写出报警距离(米)与车速(米/秒)之间的函数关系式;并求当,在汽车达到报警距离时,若人和系统均未采取任何制动措施,仍以此速度行驶的情况下,汽车撞上固定障碍物的最短时间(精确到0.1秒);(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于50米,则汽车的行驶速度应限制在多少千米/小时?20.已知(1)求的值(2)求的值.(结果保留根号)21.已知二次函数的图象经过,且不等式对一切实数都成立(1)求函数的解析式;(2)若对任意,不等式恒成立,求实数的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】根据图像平移过程,写出平移后的函数解析式即可.【详解】由题设,.故选:D2、C【解析】由已知可得AD⊥DC又由其余各棱长都为1得正三角形BCD,取CD得中点E,连BE,则BE⊥CD在平面ADC中,过E作AD的平行线交AC于点F,则∠BEF为二面角A﹣CD﹣B的平面角∵EF=(三角形ACD的中位线),BE=(正三角形BCD的高),BF=(等腰RT三角形ABC,F是斜边中点)∴cos∠BEF=故选C.3、D【解析】根据最小正周期判断AC,根据单调性排除B,进而得答案.【详解】解:对于AC选项,,的最小正周期为,故错误;对于B选项,最小正周期为,在区间上单调递减,故错误;对于D选项,最小正周期为,当时,为单调递增函数,故正确.故选:D4、B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件.【详解】.,且,,当且仅当,即时,取得最小值2.的最小值为.故选B.【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题.5、A【解析】利用特例法、函数单调性的定义结合充分条件、必要条件的定义判断可得出合适的选项.【详解】若函数在上严格递增,对任意的、且,,由不等式的性质可得,即,所以,在上严格递增,所以,“在上严格递增”“在上严格递增”;若在上严格递增,不妨取,则函数在上严格递增,但函数在上严格递减,所以,“在上严格递增”“在上严格递增”.因此,“在上严格递增”是“在上严格递增”的充分不必要条件.故选:A.6、C【解析】将圆的方程化为标准方程即可得圆的半径.【详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【点睛】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.7、B【解析】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°故答案选:B8、A【解析】由幂函数的定义可得出关于的等式,求出的值,然后再将的值代入函数解析式进行检验,可得结果.【详解】因为函数为幂函数,则,即,解得或.若,函数解析式为,该函数在定义域上不单调,舍去;若,函数解析式,该函数在定义域上为增函数,合乎题意.综上所述,.故选:A.9、D【解析】根据函数的解析式,可知其关于直线,可判断①正确;是由与相加而成,故该函数为单调函数,由此可判断②;根据的函数值情况可判断③;看时情况,结合函数的单调性,可判断④的正误.【详解】对①,因为函数与|的图象都关于直线对称,所以的图象关于直线对称,①正确对②,当时,函数与都单调递增,所以也单调递增,②正确对③,当时,,③错误对④,因为图象关于直线对称,在上单调递减,在上单调递增,且,所以存在,使得的解集为,④正确故选:D10、D【解析】对于,,,故,故错误;根据对数函数的单调性,可知错误故选二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得.【详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.故答案为:.12、【解析】由已知得,所以,所以答案:点睛:向量数量积的求法及注意事项:(1)计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用(2)求向量模的常用方法:利用公式,将模的运算转化为向量的数量积的运算,解题时要注意向量数量积运算率的灵活应用(3)利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧13、【解析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为14、【解析】直接利用基本不等式的应用求出结果【详解】解:由于,所以(当且仅当时,等号成立)故最小值为故答案为:15、【解析】利用指数的运算法则和对数的运算法则即求.【详解】原式.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)或;(2);(3)不存在.【解析】(1)设出直线方程,结合点到直线距离公式,计算参数,即可.(2)证明得到点P为MN的中点,建立圆方程,即可.(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可【详解】(1)直线斜率存在时,设直线的斜率为,则方程为,即.又圆的圆心为,半径,由,解得.所以直线方程为,即.当的斜率不存在时,的方程为,经验证也满足条件即直线的方程为或.(2)由于,而弦心距,所以.所以恰为的中点故以为直径的圆的方程为.(3)把直线代入圆的方程,消去,整理得.由于直线交圆于两点,故,即,解得.则实数的取值范围是设符合条件的实数存在,由于垂直平分弦,故圆心必在上.所以的斜率,而,所以.由于,故不存在实数,使得过点的直线垂直平分弦.【点睛】考查了点到直线距离公式,考查了圆方程计算方法,考查了直线斜率计算方法,难度偏难17、(1)(2)【解析】(1)先将小数转化为分数并约简,然后各式化成指数幂的形式,再利用指数运算法则即可化简求值.(2)先利用对数的换底公式,以及相关的运算公式将转化为以表示的式子,然后换成m,n即可.【详解】解:(1)原式(2)原式【点睛】主要考查指数幂运算公式以及对数的运算公式的应用,属于基础题.18、(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)连,交于,连,由中位线定理即可证明平面.(Ⅱ)根据,由等体积法即可求得点到平面的距离.【详解】(Ⅰ)连,设交于,连,如下图所示:因为为的中点,为的中点,则面,不在面内,所以平面(Ⅱ)因为等腰直角三角形中,则,又因为所以平面则设点到平面的距离为.注意到,由,代入可得:,解得.即点到平面的距离为.【点睛】本题考查了直线与平面平行的判定,等体积法求点到平面距离的方法,属于中等题.19、(1);2.4秒;(2)72(千米/小时)【解析】(1)由图,分别计算出报警时间、人的反应时间、系统反应时间、制动时间,相应的距离,,,,代入中即可,,利用基本不等式求最值;(2)将问题转化为对于任意,恒成立,利用分离参数求范围即可.【详解】(1)由题意得,所以当时,,(秒)即此种情况下汽车撞上固定障碍物的最短时间约为2.4秒(2)根据题意要求对于任意,恒成立,即对于任意,,即恒成立,由,得所以,即,解得所以,(千米/小时)20、(1);(2).【解析】(1)利用二倍角公式化简得,然后利用同角关系式即得;(2)利用两角差的正弦公式即求.【小问1详解】由,得,∵,,∴,∴,∴.【小问2详解】由(1)知,∴.21、(1);(2).【解析】(1)观察不等式,令,得到成立,即,以及,再根据不等式对一切实数都成立,列式求函数的解析式;(2)法一,不等式转化为对恒成立,利用函数与不等式的关系,得到的取值范围,法二,代入后利用平方关系得到,恒成立,再根据参变分离,转化为最值问题求参数的取值范围.【详解】(1)由题意得:①,因为不等式对一切实数都成立,令,得:,所以,即②由①②解得:,且,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CHATA 023-2022结核病定点医疗机构结核感染预防与控制规范
- T/CFPA 012-2022消防用压接式涂覆碳钢管材及管件
- T/CEPPEA 5023-2023风光储充一体化充电站设计规范
- T/CEMTA 4-2023工业炸药生产线安全联锁检测方法温度、压力和流量
- T/CECS 10197-2022高分子膜基预铺防水卷材
- T/CCS 062-2023井工煤矿智能化采煤系统运维管理规范
- T/CCOA 56-2023拉面专用小麦粉
- T/CBMCA 028-2022室内空气治理产品
- T/CATCM 013-2021灵芝(赤芝)及其孢子粉质量规范
- T/CASTEM 1015-2023新型研发机构绩效评估规范
- 综合管线测量技术方案
- 古风团扇手工课件
- 2025-2030中国养老行业市场深度分析及前景趋势与投资研究报告
- 医院基建部面试题及答案
- 2025年中考物理模拟试卷猜题卷 3套(含答案)
- 2024-2025学年沪教版七年级数学上册复习:分式(7大题型)(42道压轴题专练)解析版
- 恒温烙铁焊接温度验证报告
- 湖北省松滋市老城镇八一小学2024-2025学年小学六年级第二学期小升初数学试卷含解析
- 企业经营管理的基本理论知识90P
- 石墨产品设计与生产中的质量控制与优化
- 邮政邮件内部处理业务外包服务投标方案(技术方案)
评论
0/150
提交评论