版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年黑龙江省佳木斯市一中数学高一上期末注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.直线l:ax+y﹣3a=0与曲线y有两个公共点,则实数a的取值范围是A.[,] B.(0,)C.[0,) D.(,0)2.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.3.已知全集,集合,那么()A. B.C. D.4.如图,AB是⊙O直径,C是圆周上不同于A、B的任意一点,PA与平面ABC垂直,则四面体P_ABC的四个面中,直角三角形的个数有()A.4个 B.3个C.1个 D.2个5.已知,则的值为()A. B.C. D.6.已知函数,则下列对该函数性质的描述中不正确的是()A.的图像关于点成中心对称B.的最小正周期为2C.的单调增区间为D.没有对称轴7.函数fxA.0 B.1C.2 D.38.已知直线、、与平面、,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则9.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是A. B.C. D.10.已知是奇函数,且满足,当时,,则在内是A.单调增函数,且 B.单调减函数,且C.单调增函数,且 D.单调减函数,且二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若在内有两个不同的实数值满足等式,则实数k的取值范围是_______12.函数,且)的图象恒过定点,则点的坐标为___________;若点在函数的图象上,其中,,则的最大值为___________.13.在矩形ABCD中,O是对角线的交点,若,则=________.(用表示)14.函数为奇函数,当时,,则______15.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是___.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数是定义在R上的奇函数,当时,.(1)求函数在上的解析式;(2)求不等式解集.17.已知圆过,,且圆心在直线上(1)求此圆的方程(2)求与直线垂直且与圆相切的直线方程(3)若点为圆上任意点,求的面积的最大值18.已知函数的部分图象如图所示.(Ⅰ)求函数的解析式;(Ⅱ)若为第二象限角且,求的值.19.在①函数的图象向右平移个单位长度得到的图象,且图象关于原点对称;②向量,,,;③函数.在以上三个条件中任选一个,补充在下面问题中空格位置,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若,且,求的值;(2)求函数在上的单调递减区间.20.已知集合,.(1)当时,求,;(2)若,且“”是“”的充分不必要条件,求实数的取值范围.21.已知平面上点,且.(1)求;(2)若点,用基底表示.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据直线的点斜式方程可得直线过定点,曲线表示以为圆心,1为半径的半圆,作出图形,利用数形结合思想求出两个极限位置的斜率,即可得解.【详解】直线,即斜率为且过定点,曲线为以为圆心,1为半径的半圆,如图所示,当直线与半圆相切,为切点时(此时直线的倾斜角为钝角),圆心到直线的距离,,解得,当直线过原点时斜率,即,则直线与半圆有两个公共点时,实数的取值范围为:[0,),故选:C【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题.2、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法3、C【解析】应用集合的补运算求即可.【详解】∵,,∴.故选:C4、A【解析】AB是圆O的直径,可得出三角形是直角三角形,由圆O所在的平面,根据线垂直于面性质得出三角形和三角形是直角三角形,同理可得三角形是直角三角形.【详解】∵AB是圆O的直径,∴∠ACB=,即,三角形是直角三角形.又∵圆O所在的平面,∴三角形和三角形是直角三角形,且BC在此平面中,∴平面,∴三角形是直角三角形.综上,三角形,三角形,三角形,三角形.直角三角形数量为4.故选:A.【点睛】考查线面垂直的判定定理和应用,知识点较为基础.需多理解.难度一般.5、C【解析】利用余弦的二倍角公式即可求解.【详解】.故选:C.6、C【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可【详解】对于A:令,令,可得函数的一个对称中心为,故正确;对于B:函数f(x)的最小正周期为T=,故正确;对于C:令,解不等式可得函数的单调递增区间为,故错误;对于D:正切函数不是轴对称图形,故正确故选:C【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键7、B【解析】作出函数图像,数形结合求解即可.【详解】解:根据题意,x3-1故函数y=x3与由于函数y=x3与所以方程x3所以函数fx故选:B8、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因为,所以平面内存在直线,若,则,且,所以,故D正确.故选:D9、C【解析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.10、A【解析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求【详解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期为2的周期函数∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)<0,且函数在(﹣1,0)上单调递增根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0故选A【点睛】本题主要考查了函数的周期性和函数的单调性,同时考查了分析问题,解决问题的能力,属于基础题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】讨论函数在的单调性即可得解.【详解】函数,时,单调递增,时,单调递减,,,,所以在内有两个不同的实数值满足等式,则,所以.故答案为:12、①②.##0.5【解析】根据对数函数图象恒过定点求出点A坐标;代入一次函数式,借助均值不等式求解作答.【详解】函数,且)中,由得:,则点;依题意,,而,,则,当且仅当2m=n=1时取“=”,即,所以点的坐标为,的最大值为.故答案为:;13、【解析】根据=,利用向量的线性运算转化即可.【详解】在矩形ABCD中,因为O是对角线的交点,所以=,故答案为:.【点睛】本题考查平面向量的线性运算,较为容易.14、【解析】根据对数运算和奇函数性质求解即可.【详解】解:因为函数为奇函数,当时,所以.故答案为:15、3【解析】直线AB的方程为+=1,又∵+≥2,即2≤1,当x>0,y>0时,当且仅当=,即x=,y=2时取等号,∴xy≤3,则xy的最大值是3.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)根据奇函数的知识求得函数在上的解析式.(2)结合函数的单调性、奇偶性求得不等式的解集.小问1详解】当时,,.所以函数在上的解析式为.【小问2详解】当时,为增函数,所以在上为增函数.由得,所以,所以,所以不等式的解集为.17、(1)(2)或(3)【解析】(1)一般利用待定系数法,先求出圆心的坐标,再求出圆的半径,即得圆的方程.(2)先设出直线的方程,再利用直线和圆相切求出其中的待定系数.(3)一般利用数形结合分析解答.当三角形的高是d+r时,三角形的面积最大.【详解】(1)易知中点为,,∴的垂直平分线方程为,即,联立,解得则,∴圆的方程为(2)知该直线斜率为,不妨设该直线方程为,由题意有,解得∴该直线方程为或(3),即,圆心到的距离∴点睛:本题的难点在第(3)问方法的选择,选择数形结合分析解答比较方便.数形结合是高中数学里一种重要的数学思想,在解题中要灵活运用.18、(1);(2).【解析】(1)根据图象可得周期,故.再根据图象过点可得.最后根据函数的图象过点可求得,从而可得解析式.(2)由题意可得,进而可求得和,再按照两角和的正弦公式可求得的值试题解析:(1)由图可知,周期,∴.又函数的图象过点,∴,∴,∴,∵,∴∴,∵函数图象过点,∴,∴,所以.(2)∵为第二象限角且,∴,∴,,∴点睛:已知图象求函数解析式的方法(1)根据图象得到函数的周期,再根据求得(2)可根据代点法求解,代点时一般将最值点的坐标代入解析式;也可用“五点法”求解,用此法时需要先判断出“第一点”的位置,再结合图象中的点求出的值(3)在本题中运用了代点的方法求得的值,一般情况下可通过观察图象得到的值19、(1)(2),【解析】(1)若选条件①,根据函数的周期性求出,再根据三角函数的平移变换规则及函数的对称性求出,即可得到函数解析式,再求出的值,最后代入计算可得;若选条件②,根据平面向量数量积的坐标表示及三角恒等变换化简函数解析式,再根据周期性求出,即可得到函数解析式,再求出的值,最后代入计算可得;若选条件③,利用两角和的正弦公式及二倍角公式、辅助角公式将函数化简,再根据周期性求出,即可得到函数解析式,再求出的值,最后代入计算可得;(2)根据正弦函数的性质求出函数的单调递减区间,再根据函数的定义域令和,即可求出函数在指定区间上的单调递减区间;【小问1详解】解:若选条件①:由题意可知,,,,,又函数图象关于原点对称,所以,,,,,,,,,,若选条件②:因,,,,所以又,,,,,;若选条件③:,又,,,,,;【小问2详解】解:由,,解得,,令,得,令,得,函数在上的单调递减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年普通型G字夹项目可行性研究报告
- 二零二五年度医疗健康产业个人股权交易合同3篇
- 2024年掺配鬃刷项目可行性研究报告
- 2024年退伙声明协议:合伙人自愿退出声明3篇
- 2024年微量热计项目可行性研究报告
- 二零二五年度二手房买卖合同含房屋权属确认及登记服务2篇
- 2025青海省安全员-B证考试题库及答案
- 2025年度酒店安保人员聘用合同书标准版3篇
- 2024年家用壁挂燃气锅炉项目可行性研究报告
- 2025版房地产租赁合同范本一3篇
- 工程项目施工方案比选
- 盾构始发施工技术要点PPT(44页)
- 甲烷(沼气)的理化性质及危险特性表
- 某钢铁有限责任公司管理专案报告书---提升配电系统管理水平降低变配电装置事故率
- 促销费用管理办法15
- 《三国演义》整本书阅读任务单
- GB 13296-2013 锅炉、热交换器用不锈钢无缝钢管(高清版)
- 企业信用管理制度
- 中医院中药的饮片处方用名与调剂给付规定
- 钻孔灌注桩及后注浆施工方案施工方案
- 3D小白人透明底色PPT素材
评论
0/150
提交评论