版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省南通市如皋中学数学高一上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切2.已知函数则满足的实数的取值范围是()A. B.C. D.3.下面四种说法:①若直线异面,异面,则异面;②若直线相交,相交,则相交;③若,则与所成的角相等;④若,,则.其中正确的个数是()A.4 B.3C.2 D.14.下列函数中,在其定义域内单调递减的是()A. B.C. D.5.已知角的终边经过点,且,则的值为()A. B.C. D.6.已知函数,则()A. B.C. D.7.若,,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是()A. B.C. D.9.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B.C. D.10.若,则所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限11.直线与圆相切,则的值为()A. B.C. D.12.设,为正数,且,则的最小值为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知的图象的对称轴为_________________14.实数,满足,,则__________15.已知函数的最大值与最小值之差为,则______16.若,则________.三、解答题(本大题共6小题,共70分)17.已知,,,,求.18.已知函数是定义在R上的奇函数.(1)求函数的解析式,判断并证明函数的单调性;(2)若存在实数,使成立,求实数的取值范围.19.已知定义在上的奇函数,当时,.(1)求函数在上的解析式;(2)在给出的直角坐标系中作出的图像,并写出函数的单调区间.20.已知集合,,(1)求集合A,B及.(2)若,求实数a的取值范围.21.现有银川二中高一年级某班甲、乙两名学生自进入高中以来的历次数学成绩(单位:分),具体考试成绩如下:甲:、、、、、、、、、、、、;乙:、、、、、、、、、、、、(1)请你画出两人数学成绩的茎叶图;(2)根据茎叶图,运用统计知识对两人的成绩进行比较.(最少写出两条统计结论)22.已知,、、在同一个平面直角坐标系中的坐标分别为、、(1)若,求角的值;(2)当时,求的值
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.2、B【解析】根据函数的解析式,得出函数的单调性,把不等式,转化为相应的不等式组,即可求解.【详解】由题意,函数,可得当时,,当时,函数在单调递增,且,要使得,则,解得,即不等式的解集为,故选:B.【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下:(1)根据函数的解析式,得出函数单调性;(2)合理利用函数的单调性,得出不等式组;(3)正确求解不等式组,得到结果.3、D【解析】对于①,直线a,c的关系为平行、相交或异面.故①不正确对于②,直线a,c的关系为平行、相交或异面.故②不正确对于③,由异面直线所成角的定义知正确对于④,直线a,c关系为平行、相交或异面.故④不正确综上只有③正确.选D4、B【解析】根据函数的单调性确定正确选项【详解】在上递增,不符合题意.在上递减,符合题意.在上有增有减,不符合题意.故选:B5、B【解析】根据点,先表示出该点和原点之间的距离,再根据三角函数的定义列出等式,解方程可得答案.【详解】因为角的终边经过点,则,因为,所以,且,解得,故选:B6、B【解析】由分段函数解析式及指数运算求函数值即可.【详解】由题设,,所以.故选:B.7、B【解析】应用诱导公式可得,,进而判断角的终边所在象限.【详解】由题设,,,所以角的终边在第二象限.故选:B8、D【解析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可.【详解】解:因为关于x的方程恰有两个不同的实数解,所以函数与图像有两个交点,作出函数图像,如图,所以时,函数与图像有两个交点,所以实数m的取值范围是故选:D9、C【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果.【详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C.【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.10、A【解析】先由题中不等式得出在第二象限,然后求出的范围,即可判断其所在象限【详解】因为,,所以,故在第二象限,即,故,当为偶数时,在第一象限,当为奇数时,在第三象限,即所在象限是第一、三象限故选A.【点睛】本题考查了三角函数的象限角,属于基础题11、D【解析】由圆心到直线的距离等于半径可得【详解】由题意圆标准方程为,圆心坐标为,半径为1,所以,解得故选:D12、B【解析】将拼凑为,利用“1”的妙用及其基本不等式求解即可.【详解】∵,∴,即,∴,当且仅当,且时,即,时等号成立故选:.二、填空题(本大题共4小题,共20分)13、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:14、8【解析】因为,,所以,,因此由,即两交点关于(4,4)对称,所以8点睛:利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.15、或.【解析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【详解】由题意,函数,当时,函数在上为单调递增函数,可得,解得;当时,显然不成立;当时,函数在上为单调递减函数,可得,解得,综上可得,或.故答案为:或.16、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:三、解答题(本大题共6小题,共70分)17、【解析】由已知结合商数关系、平方关系求,根据的范围及平方关系求,最后由结合差角余弦公式求值即可.【详解】因为,所以,又,可得或,而,所以,由,且,解得,因为,,则,所以,所以.18、(1),函数在上单调递减,证明见解析(2)【解析】(1)由为奇函数且定义域为R,则,即可求得,进而得到解析式;设,代入解析式中证得即可;(2)由奇函数,可将问题转化为,再利用单调性可得存在实数,使成立,即为存在实数,使成立,进而求解即可【详解】解:(1)为奇函数且定义域为R,所以,即,所以,所以,所以函数在R上单调递减,设,则,因为,所以,即,所以,所以,即,所以函数在上单调递减.(2)存在实数,使成立.由题,则存在实数,使成立,因为为奇函数,所以成立,又因为函数在R上单调递减,所以存在实数,使成立,即存在实数,使成立,而当时,,所以的取值范围是【点睛】本题考查利用函数奇偶性求解析式,考查定义法证明函数单调性,考查已知函数单调性求参数问题,考查转化思想和运算能力19、(1)(2)图像答案见解析,单调递增区间为,单调递减区间为【解析】(1)由函数的奇偶性的定义和已知解析式,计算时的解析式,可得所求的解析式;(2)由分段函数的图像画法,可得所求图像,结合的图像,可得的单调区间【小问1详解】设,则,所以,又为奇函数,所以,又为定义在上的奇函数,所以,所以【小问2详解】作出函数的图像,如图所示:函数的单调递增区间为,单调递减区间为.20、(1),,;(2).【解析】(1)解不等式得到集合,,进而可得;(2)先求,再根据得到,由此可解得实数的取值范围【详解】(1)∵,∴且,解得,故集合.∵,∴,解得,故集合.∴.(2)由()可得集合,集合,则.又集合,由得,解得,故实数的取值范围是21、(1)图见解析(2)答案见解析【解析】(1)直接按照茎叶图定义画出即可;(2)通过中位数、平均数、方差依次比较.【小问1详解】甲、乙两人数学成绩的茎叶图如图所示:【小问2详解】①从整体分析:乙同学的得分情况是大致对称的,中位数是;甲同学的得分情况,也大致对称,中位数是;②平均分的角度分析:甲同学的平均分为,乙同学的平均分为,乙同学的平均成绩比甲同学高;③方差(稳定性)的角度:乙同学的成绩比较稳定,总体情况比甲同学好.22、(1)(2)-【解析】⑴首先可以通过、、写
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版工地挖掘机租用合同
- 2025年度10KV配电工程电力设施保护与安全防护合同3篇
- 2024年股权无偿交接协议样本版
- 2024版化学品货物运输安全合同
- 2024年矿产资源开发与合作合同详细条款
- 2025版公益慈善捐赠协议三方合作细则3篇
- 二零二五年度二手房买卖专业评估合同3篇
- 2024汽车金融公司信贷业务合同
- 2024年规范化劳务派遣合同范本版B版
- 2025版酒店场地租赁合同书及客房住宿预订服务及优惠条款3篇
- 语法辨析-中考语文真题题源解密(辽宁版)(带答案)
- 山西省晋中市2023-2024学年高一上学期期末考试 化学 含解析
- 2024-2030年中国电子驻车制动器(EPB)行业发展现状及前景趋势研究报告
- 过程审核表(产品组评分矩阵评审提问表(评分))-2024年百度过
- 操作手册模板【范本模板】
- 油气管道泄漏事故应急处理方案
- 2025年湖北省武汉市高考数学模拟试卷附答案解析
- DB11∕T 353-2021 城市道路清扫保洁质量与作业要求
- 三方代收款委托协议书范文
- 2023-2024学年全国小学二年级上英语人教版期末考试试卷(含答案解析)
- 2024-2030年中国有机蔬菜市场营销模式建议及供需渠道分析报告
评论
0/150
提交评论