2023-2024学年江苏省沭阳县修远中学、泗洪县洪翔中学数学高一上期末监测试题含解析_第1页
2023-2024学年江苏省沭阳县修远中学、泗洪县洪翔中学数学高一上期末监测试题含解析_第2页
2023-2024学年江苏省沭阳县修远中学、泗洪县洪翔中学数学高一上期末监测试题含解析_第3页
2023-2024学年江苏省沭阳县修远中学、泗洪县洪翔中学数学高一上期末监测试题含解析_第4页
2023-2024学年江苏省沭阳县修远中学、泗洪县洪翔中学数学高一上期末监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省沭阳县修远中学、泗洪县洪翔中学数学高一上期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若函数在区间上单调递增,则实数的取值范围为()A B.C. D.2.函数与则函数所有零点的和为A.0 B.2C.4 D.83.已知正实数x,y,z,满足,则()A. B.C. D.4.设命题:,则的否定为()A. B.C. D.5.已知关于的方程的两个实根为满足则实数的取值范围为A. B.C. D.6.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}7.关于的不等式恰有2个整数解,则实数的取值范围是()A. B.C. D.8.若,则是第()象限角A.一 B.二C.三 D.四9.函数在区间上的最大值为A.2 B.1C. D.1或10.直线l的方程为Ax+By+C=0,当,时,直线l必经过A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限11.已知函数若关于的方程有6个根,则的取值范围为()A. B.C. D.12.下列函数在定义域内既是奇函数,又是减函数的是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知集合,,则=______14.圆的圆心到直线的距离为______.15.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________16.对数函数(且)的图象经过点,则此函数的解析式________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知(1)设,求t的最大值与最小值;(2)求的值域18.计算下列各式的值:(1)(2)19.(1)若,求的值;(2)已知锐角,满足,若,求的值.20.计算题21.已知实数,定义域为的函数是偶函数,其中为自然对数的底数(Ⅰ)求实数值;(Ⅱ)判断该函数在上的单调性并用定义证明;(Ⅲ)是否存在实数,使得对任意的,不等式恒成立.若存在,求出实数的取值范围;若不存在,请说明理由22.已知函数,(1)若,求在区间上的最小值;(2)若在区间上有最大值3,求实数的值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】函数为复合函数,先求出函数的定义域为,因为外层函数为减函数,则求内层函数的减区间为,由题意知函数在区间上单调递增,则是的子集,列出关于的不等式组,即可得到答案.【详解】的定义域为,令,则函数为,外层函数单调递减,由复合函数的单调性为同增异减,要求函数的增区间,即求的减区间,当,单调递减,则在上单调递增,即是的子集,则.故选:C.2、C【解析】分析:分别作与图像,根据图像以及对称轴确定零点以及零点的和.详解:分别作与图像,如图,则所有零点的和为,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等3、A【解析】根据指数函数和对数函数的图像比较大小即可.【详解】令,则,,,由图可知.4、B【解析】本题根据题意直接写出命题的否定即可.【详解】解:因为命题:,所以的否定:,故选:B【点睛】本题考查含有一个量词的命题的否定,是基础题.5、D【解析】利用二次方程实根分布列式可解得.【详解】设,根据二次方程实根分布可列式:,即,即,解得:.故选D.【点睛】本题考查了二次方程实根的分布.属基础题.6、B【解析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.7、B【解析】由已知及一元二次不等式的性质可得,讨论a结合原不等式整数解的个数求的范围,【详解】由恰有2个整数解,即恰有2个整数解,所以,解得或,①当时,不等式解集为,因为,故2个整数解为1和2,则,即,解得;②当时,不等式解集为,因为,故2个整数解为,则,即,解得.综上所述,实数的取值范围为或.故选:B.8、C【解析】由终边位置可得结果.【详解】,终边落在第三象限,为第三象限角.故选:C.9、A【解析】利用同角三角函数的基本关系化简函数f(x)的解析式为﹣(sinx﹣1)2+2,根据二次函数的性质,求得函数f(x)的最大值【详解】∵函数f(x)=cos2x+2sinx=1﹣sin2x+2sinx=﹣(sinx﹣1)2+2,∴sinx≤1,∴当sinx=1时,函数f(x)取得最大值为2,故选A【点睛】本题主要考查同角三角函数的基本关系,正弦函数的定义域和值域,二次函数的性质,属于中档题10、A【解析】把直线方程化为斜截式,根据斜率以及直线在y轴上的截距的符号,判断直线在坐标系中的位置【详解】当A>0,B<0,C>0时,直线Ax+By+C=0,即y=﹣x﹣,故直线的斜率﹣>0,且直线在y轴上的截距﹣>0,故直线经过第一、二、三象限,故选A【点睛】本题主要考查根据直线的斜截式方程判断直线在坐标系中的位置,属于基础题11、B【解析】作出函数的图象,令,则原方程可化为在上有2个不相等的实根,再数形结合得解.【详解】作出函数的图象如图所示.令,则可化为,要使关于的方程有6个根,数形结合知需方程在上有2个不相等的实根,,不妨设,,则解得,故的取值范围为,故选B【点睛】形如的函数的零点问题与函数图象结合较为紧密,处理问题的基础和关键是作出,的图象.若已知零点个数求参数的范围,通常的做法是令,先估计关于的方程的解的个数,再根据的图象特点,观察直线与图象的交点个数,进而确定参数的范围12、D【解析】利用常见函数的奇偶性和单调性逐一判断即可.【详解】对于A,,是偶函数,不满足题意对于B,是奇函数,但不是减函数,不满足题意对于C,,是奇函数,因为是增函数,是减函数,所以是增函数,不满足题意对于D,是奇函数且是减函数,满足题意故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、{-1,1,2};【解析】=={-1,1,2}14、1【解析】利用点到直线的距离公式可得所求的距离.【详解】圆心坐标为,它到直线的距离为,故答案为:1【点睛】本题考查圆的标准方程、点到直线的距离,此类问题,根据公式计算即可,本题属于基础题.15、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.16、【解析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式.【详解】由已知条件可得,可得,因为且,所以,.因此,所求函数解析式为.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),;(2)[3,4].【解析】(1)利用对数函数的单调性即得;(2)换元后结合二次函数的性质可得函数在上单调递增,即求.【小问1详解】因为函数在区间[2,4]上是单调递增的,所以当时,,当时,【小问2详解】令,则,由(1)得,因为函数在上是单调增函数,所以当,即时,;当,即时,,故的值域为.18、(1)(2)【解析】(1)根据指数的运算性质进行求解即可;(2)根据对数的运算性质进行求解即可.【小问1详解】【小问2详解】19、(1)5;(2).【解析】(1)根据给定条件化正余的齐次式为正切,再代入计算作答.(2)根据给定条件利用差角的余弦公式求出,结合角的范围求出即可作答.【详解】(1)因,所以.(2)因,是锐角,则,,又,,因此,,,则,显然,于是得:,解得,所以的值为.20、2【解析】直接利用指数幂的运算法则求解即可,化简过程注意避免出现计算错误.【详解】化简.【点睛】本题主要考查指数幂的运算,属于中档题.指数幂运算的四个原则:(1)有括号的先算括号里的,无括号的先做指数运算;(2)先乘除后加减,负指数幂化成正指数幂的倒数;(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数;(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(化简过程中一定要注意等价性,特别注意开偶次方根时函数的定义域)21、(Ⅰ)1;(Ⅱ)在上递增,证明详见解析;(Ⅲ)不存在.【解析】(Ⅰ)根据函数是偶函数,得到恒成立,即恒成立,进而得到,即可求出结果;(Ⅱ)任取,且,根据题意,作差得到,进而可得出函数单调性;(Ⅲ)由(Ⅱ)知函数在上递增,由函数是偶函数,所以函数在上递减,再由题意,不等式恒成立可化为恒成立,即对任意的恒成立,根据判别式小于0,即可得出结果.【详解】(Ⅰ)因为定义域为的函数是偶函数,则恒成立,即,故恒成立,因为不可能恒为,所以当时,恒成立,而,所以(Ⅱ)该函数在上递增,证明如下设任意,且,则,因为,所以,且;所以,即,即;故函数在上递增(Ⅲ)由(Ⅱ)知函数在上递增,而函数是偶函数,则函数在上递减.若存在实数,使得对任意的,不等式恒成立.则恒成立,即,即对任意的恒成立,则,得到,故,所以不存在【点睛】本主要考查由函数奇偶性求参数,用单调性的定义判断函数单调性,以及由不等式恒成立求参数的问题,熟记函数单调性与奇偶性的定义即可,属于常考题型.22、(1);(2)或.【解析】(1)先求函数对称轴,再根据对称轴与定义区间位置关系确定最小值取法(2)根据对称轴与定义区间位置关系三种情况分类讨论最大值取法,再根据最大值为3,解方程求出实数的值试题解析:解:(1)若,则函数图像开口向下,对称轴为,所以函数在区间上是单调递增的,在区间上是单调递减的,有又,(2)对称轴为当时,函数在在区间上是单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论