版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年上海市莘庄中学等四校高一上数学期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数的部分图象大致是图中的()A.. B.C. D.2.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为A.1 B.C. D.23.设集合M={x|x=×180°+45°,k∈Z},N={x|x=×180°+45°,k∈Z},那么()A.M=N B.N⊆MC.M⊆N D.M∩N=∅4.函数的部分图象大致为()A. B.C. D.5.若函数在上单调递增,且,则实数的取值范围是()A. B.C. D.6.函数的图象可能是()A. B.C. D.7.下列关于函数,的单调性叙述正确的是()A.在上单调递增,在上单调递减B.在上单调递增,在上单调递减C.在及上单调递增,在上单调递减D.在上单调递增,在及上单调递减8.若,,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限9.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.若,则()A B.C. D.11.已知函数在[2,3]上单调递减,则实数a的取值范围是()A. B.C. D.12.若,则下列不等式成立的是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若扇形的面积为,半径为1,则扇形的圆心角为___________.14.已知函数则___________.15.已知命题:,都有是真命题,则实数取值范围是______16.设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.过点的直线被两平行直线与所截线段的中点恰在直线上,求直线的方程18.已知函数(I)求的值(II)求的最小正周期及单调递增区间.19.如图,设α是任意角,α∈R,它的终边OA与单位圆相交于点A,点(1)当A在OB的反向延长线上时,求tanα;(2)当OA⊥OB时,求sin2α.20.已知函数(常数).(1)当时,用定义证明在区间上是严格增函数;(2)根据的不同取值,判断函数的奇偶性,并说明理由;(3)令,设在区间上的最小值为,求的表达式.21.近年来,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量(单位:mg/L)与过滤时间(单位:h)间的关系为(,均为非零常数,e为自然对数的底数),其中为时的污染物数量.若经过5h过滤后还剩余90%的污染物.(1)求常数的值;(2)试计算污染物减少到40%至少需要多长时间.(精确到1h,参考数据:,,,,)22.已知函数.(1)判断函数在上的单调性,并用定义证明;(2)记函数,证明:函数在上有唯一零点.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据函数的奇偶性及函数值得符号即可得到结果.【详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【点睛】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题2、D【解析】圆锥的侧面展开图为扇形,根据扇形的弧长即为圆锥的底面圆的周长可得母线与底面圆半径间的关系【详解】设圆锥的母线长为,底面圆的半径为,由已知可得,所以,所以,即圆锥的母线与底面半径之比为2.故选D【点睛】解答本题时要注意空间图形和平面图形间的转化以及转化过程中的等量关系,解题的关键是根据扇形的弧长等于圆锥底面圆的周长得到等量关系,属于基础题3、C【解析】变形表达式为相同的形式,比较可得【详解】由题意可即为的奇数倍构成的集合,又,即为的整数倍构成的集合,,故选C【点睛】本题考查集合的包含关系的判定,变形为同样的形式比较是解决问题的关键,属基础题4、A【解析】由奇偶性定义判断对称性,再根据解析式判断、上的符号,即可确定大致图象.【详解】由题设,且定义域为R,即为奇函数,排除C,D;当时恒成立;,故当时,当时;所以,时,时,排除B;故选:A.5、C【解析】由单调性可直接得到,解不等式即可求得结果.【详解】上单调递增,,,解得:,实数的取值范围为.故选:C6、C【解析】令,可判断出g(x)的图象就是将h(x)的图象向上平移一个单位,由图像的对称性即可得到答案.【详解】令则,即g(x)的图象就是将h(x)的图象向上平移一个单位即可.因为h(-x)=f(-x)-f(x)=-h(x),即函数h(x)为奇函数,图象关于原点对称,所以的图象关于(0,1)对称.故选:C7、C【解析】先求出函数的一般性单调区间,再结合选项判断即可.【详解】的单调增区间满足:,即,所以其单调增区间为:,同理可得其单调减区间为:.由于,令中的,有,,所以在上的增区间为及.令中的,有,所以在上的减区间为.故选:C8、D【解析】本题考查三角函数的性质由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为9、A【解析】利用充分条件和必要条件的定义判断即可【详解】,所以“”是“”的充分不必要条件故选:A10、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论11、C【解析】根据复合函数的单调性法则“同增异减”求解即可.【详解】由于函数在上单调递减,在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得:在上单调递减,且,所以且,解得:.故的取值范围是故选:C.12、D【解析】根据不等式的性质逐项判断可得答案.【详解】对于A,因为,,故,故A错误对于B,因为,,故,故,故B错误对于C,取,易得,故C错误对于D,因为,所以,故D正确故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】直接根据扇形的面积公式计算可得答案【详解】设扇形的圆心角为,因为扇形的面积为,半径为1,所以.解得,故答案为:14、5【解析】先求出,再根据该值所处范围代入相应的解析式中计算结果.【详解】由题意可得,则,故答案为:5.15、【解析】由于,都有,所以,从而可求出实数的取值范围【详解】解:因为命题:,都有是真命题,所以,即,解得,所以实数的取值范围为,故答案为:16、【解析】考点:该题主要考查平面向量的概念、数量积的性质等基础知识,考查数学能力.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、【解析】先设出线段的中点为,再根据已知求出的值,即得点M的坐标,再写出直线l的方程.【详解】设线段的中点为,因为点到与的距离相等,故,则点直线方程为,即.【点睛】(1)本题主要考查直线方程的求法,考查直线的位置关系和点到直线的距离,意在考查学生对这些知识的掌握水平和分析推理能力.(2)点到直线的距离.18、(I)2;(II)的最小正周期是,.【解析】(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值(Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间【详解】(Ⅰ)f(x)=sin2x﹣cos2xsinxcosx,=﹣cos2xsin2x,=﹣2,则f()=﹣2sin()=2,(Ⅱ)因为所以的最小正周期是由正弦函数的性质得,解得,所以,的单调递增区间是【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题19、(1);(2)【解析】(1)推导出的坐标,由此能求出;(2)设,则,且,解得,,从而,,由此能求出【详解】解:(1)设是任意角,,它的终边与单位圆相交于点,点在的反向延长线上,所以,;(2)当时,设,则,且,解得,,或,,则,或,,.或故20、(1)证明见解析(2)当时,奇函数;当时,非奇非偶函数,理由见解析.(3)【解析】(1)当时,得到函数,利用函数单调性的定义,即可作出证明;(2)分和两种情况,结合函数的奇偶性的定义,即可得出结论.(3)根据正负性,结合具体类型的函数的单调性,进行分类讨论可以求出的表达式;【小问1详解】当时,函数,设且,则,因为,可得又由,可得,所以所以,即,所以函数是上是严格增函数.【小问2详解】由函数的定义域为关于原点对称,当时,函数,可得,此时函数为奇函数;当时,,此时且,所以时,函数为非奇非偶函数.【小问3详解】,当时,,函数在区间的最小值为;当时,函数的对称轴为:.若,在区间的最小值为;若,在区间的最小值为;若,在区间的最小值为;当时,,在区间的最小值为.综上所述:;21、(1)(2)42h【解析】(1)根据题意,得到,求解,即可得出结果;(2)根据(1)的结果,得到,由题意得到,求解,即可得出结果.【详解】(1)由已知得,当时,;当时,.于是有,解得(或).(2)由(1)知,当时,有,解得.故污染物减少到40%至少需要42h.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年家庭养老支持服务协议
- 2024年人工智能技术研发与许可使用合同
- 2024年广告发布合同标的与责任规定
- 2023年厦门市演武小学顶岗人员招聘考试真题
- 2024年山坪塘景观改造合同
- 2024年军用设施转换为民用拆除协议
- 2023年安庆宿松县中医院招聘考试真题
- (2024版)网络安全技术外包服务合同
- 2024年工程设计居间委托合同
- 2024年太阳能光伏系统安装工程承包合同
- 选修课-足球教案
- 充电桩运维合同(2篇)
- 美团 课程设计
- 骨质疏松的分级诊疗及医联体的建设方案
- 河南师范大学《解析几何》2021-2022学年第一学期期末试卷
- 2024-2030年听力保护耳塞行业市场现状供需分析及投资评估规划分析研究报告
- 3.4问题解决策略:归纳-2024-2025年北师大版《数学》七年级上册
- 2024年贵州黔东南州直事业单位遴选工作人员42人历年高频难、易错点500题模拟试题附带答案详解
- 2024年中国智慧养老行业市场现状、发展概况、未来前景分析报告
- 临建板房搬迁合同模板
- 少儿美术课件国家宝藏系列《凤冠》
评论
0/150
提交评论