2023-2024学年山东省青岛市城阳一中数学高一上期末预测试题含解析_第1页
2023-2024学年山东省青岛市城阳一中数学高一上期末预测试题含解析_第2页
2023-2024学年山东省青岛市城阳一中数学高一上期末预测试题含解析_第3页
2023-2024学年山东省青岛市城阳一中数学高一上期末预测试题含解析_第4页
2023-2024学年山东省青岛市城阳一中数学高一上期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省青岛市城阳一中数学高一上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.命题:的否定是()A. B.C. D.2.函数的图象形如汉字“囧”,故称其为“囧函数”下列命题:①“囧函数”的值域为R;②“囧函数”在上单调递增;③“囧函数”的图象关于轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线至少有一个交点.正确命题的个数为A1 B.2C.3 D.43.已知向量满足,且,若向量满足,则的取值范围是A. B.C D.4.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为()A. B.C. D.5.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.6.已知集合,,,则()A. B.C. D.7.已知一组数据为20,30,40,50,50,50,70,80,其平均数、第60百分位数和众数的大小关系是()A.平均数=第60百分位数>众数 B.平均数<第60百分位数=众数C.第60百分位数=众数<平均数 D.平均数=第60百分位数=众数8.有四个关于三角函数的命题::xR,+=:x、yR,sin(x-y)=sinx-siny:x=sinx:sinx=cosyx+y=其中假命题的是A., B.,C., D.,9.如图所示的程序框图中,输入,则输出的结果是A.1 B.2C.3 D.410.设,则A. B.C. D.11.已知条件,条件,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.已知函数的图象,给出以下四个论断①的图象关于直线对称②图象的一个对称中心为③在区间上是减函数④可由向左平移个单位以上四个论断中正确的个数为()A.3 B.2C.1 D.0二、填空题(本大题共4小题,共20分)13.若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________14.函数的零点个数为___15.若是两个相交平面,则在下列命题中,真命题的序号为________.(写出所有真命题的序号)①若直线,则在平面内,一定不存在与直线平行的直线②若直线,则在平面内,一定存在无数条直线与直线垂直③若直线,则在平面内,不一定存在与直线垂直的直线④若直线,则在平面内,一定存在与直线垂直的直线16.在单位圆中,已知角的终边与单位圆的交点为,则______三、解答题(本大题共6小题,共70分)17.(1)已知,则;(2)已知角的终边上有一点的坐标是,其中,求18.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点(1)求证:CD⊥平面A1ABB1;(2)求证:AC1∥平面CDB119.已知一扇形的圆心角为,所在圆的半径为.(1)若,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积?20.设为奇函数,为常数.(1)求的值;(2)证明:在内单调递增;(3)若对于上的每一个的值,不等式恒成立,求实数的取值范围.21.已知A(3,7)、B(3,-1)、C(9,-1),求△ABC的外接圆方程.22.已知集合.(1)当时,求;(2)当时,求实数的取值范围.

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据特称命题的否定为全称命题,从而可得出答案.【详解】因为特称命题的否定为全称命题,所以命题“”的否定为“”.故选:A.2、B【解析】根据“囧函数”的定义结合反比例函数的性质即可判断①,根据复合函数的单调性即可②,根据奇偶性的定义即可判断③,根据零点的定义及反比例函数的性质即可判断④,数形结合即可判断⑤.【详解】解:由题设可知函数的函数值不会取到0,故命题①是错误的;当时,函数是单调递增函数,故“囧函数”在上单调递减,因此命题②是错误的;函数的定义域为,因为,所以函数是偶函数,因此其图象关于轴对称,命题③是真命题;因当时函数恒不为零,即没有零点,故命题④是错误的;作出的大致图象,如图,在四个象限都有图象,故直线与函数的图象至少有一个交点,因此命题⑤也是真命题综上命题③⑤是正确的,其它都是错误的.故选:B3、B【解析】由题意利用两个向量加减法的几何意义,数形结合求得的取值范围.【详解】设,根据作出如下图形,则当时,则点的轨迹是以点为圆心,为半径的圆,且结合图形可得,当点与重合时,取得最大值;当点与重合时,取得最小值所以的取值范围是故当时,的取值范围是故选:B4、C【解析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【详解】由题意:底面ABCD为正方形,侧面底面,,面面,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四边形,∴PB∥CM,所以∠ACM就是异面直线PB与AC所成的角设PA=AB=a,在三角形ACM中,,∴三角形ACM是等边三角形所以∠ACM等于60°,即异面直线PB与AC所成的角为60°故选:C.【点睛】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角5、C【解析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)6、C【解析】解一元二次不等式求出集合,解不等式求出集合,再进行交集运算即可求解.【详解】因为,,所以,故选:C.7、B【解析】从数据为20,30,40,50,50,50,70,80中计算出平均数、第60百分位数和众数,进行比较即可.【详解】解:平均数为,,第5个数50即为第60百分位数.又众数为50,它们的大小关系是平均数第60百分位数众数.故选:B.8、A【解析】故是假命题;令但故是假命题.9、B【解析】输入x=2后,该程序框图的执行过程是:输入x=2,x=2>1成立,y==2,输出y=2选B.10、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小11、B【解析】利用充分条件和必要条件的定义进行判断【详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B12、B【解析】利用代入检验法可判断①②③的正误,利用图象变换可判断④的正误.【详解】,故的图象关于直线对称,故①正确.,故的图象的对称中心不是,故②错误.,当,,而在为减函数,故在为减函数,故③正确.向左平移个单位后所得图象对应的解析式为,当时,此函数的函数值为,而,故与不是同一函数,故④错误.故选:B.二、填空题(本大题共4小题,共20分)13、【解析】根据所给弦长,圆心角求出所在圆的半径,利用扇形面积公式求解.【详解】由弦长为2,圆心角为2可知扇形所在圆的半径,故,故答案为:14、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.15、②④【解析】①当时,在平面内存在与直线平行的直线.②若直线,则平面的交线必与直线垂直,而在平面内与平面的交线平行的直线有无数条,因此在平面内,一定存在无数条直线与直线垂直.③当直线为平面的交线时,在平面内一定存在与直线垂直的直线.④当直线为平面的交线,或与交线平行,或垂直于平面时,显然在平面内一定存在与直线垂直的直线.当直线为平面斜线时,过直线上一点作直线垂直平面,设直线在平面上射影为,则平面内作直线垂直于,则必有直线垂直于直线,因此在平面内,一定存在与直线垂直的直线考点:直线与平面平行与垂直关系16、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2)当时,;当时,【解析】(1)分子分母同时除以,然后代入计算即可;(2)利用三角函数的定义求出和,再分和讨论计算即可.【详解】(1)分子分母同时除以得原式=.(2)由三角函数的定义可知,,当时,,,所以;当时,,,所以所以当时,原式;当时,原式18、(1)见解析(2)见解析【解析】(1)欲证CD⊥平面A1ABB1,可先证平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,满足根据面面垂直的性质;(2)欲证AC1∥平面CDB1,根据直线与平面平行的判定定理可知只需证AC1与平面CDB1内一直线平行,连接BC1,设BC1与B1C的交点为E,连接DE.根据中位线可知DE∥AC1,DE⊂平面CDB1,AC1⊄平面CDB1,满足定理所需条件【详解】(1)证明:∵ABC-A1B1C1是直三棱柱,∴平面ABC⊥平面A1ABB1∵AC=BC,点D是AB的中点,∴CD⊥AB,面ABC∩面A1ABB1=AB∴CD⊥平面A1ABB1(2)证明:连接BC1,设BC1与B1C的交点为E,连接DE∵D是AB的中点,E是BC1的中点,∴DE∥AC1.∵DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【点睛】本题考查直线与平面平行的判定,直线与平面垂直的判定,考查学生空间想象能力,逻辑思维能力,是中档题19、(1);(2)见解析【解析】(1)根据弧长的公式和扇形的面积公式即可求扇形的弧长及该弧所在的弓形的面积;(2)根据扇形的面积公式,结合基本不等式即可得到结论【详解】(1)设弧长为l,弓形面积为S弓,则α=90°=,R=10,l=×10=5π(cm),S弓=S扇-S△=×5π×10-×102=25π-50(cm2).(2)扇形周长C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α·=·=·≤.当且仅当α2=4,即α=2时,扇形面积有最大值.【点睛】本题主要考查扇形的弧长和扇形面积的计算,要求熟练掌握相应的公式,考查学生的计算能力20、(1)(2)证明见解析(3)【解析】(1)根据得到,验证得到答案.(2)证明的单调性,再根据复合函数的单调性得到答案.(3)确定单调递增,再计算最小值得到答案.【小问1详解】,,,即,故,,当时,,不成立,舍去;当时,,验证满足.综上所述:.【小问2详解】,函数定义域为,考虑,设,则,,,故,函数单调递减.在上单调递减,根据复合函数单调性知在内单调递增.【小问3详解】,即,为增函数.故在单调递增,故.故.21、【解析】设△ABC外

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论