2023-2024学年福建省宁德宁市-同心顺-六校联盟高一数学第一学期期末经典试题含解析_第1页
2023-2024学年福建省宁德宁市-同心顺-六校联盟高一数学第一学期期末经典试题含解析_第2页
2023-2024学年福建省宁德宁市-同心顺-六校联盟高一数学第一学期期末经典试题含解析_第3页
2023-2024学年福建省宁德宁市-同心顺-六校联盟高一数学第一学期期末经典试题含解析_第4页
2023-2024学年福建省宁德宁市-同心顺-六校联盟高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年福建省宁德宁市-同心顺-六校联盟高一数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数的定义域是()A.(-1,1) B.C.(0,1) D.2.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是A. B.1C.2 D.3.设函数对任意的,都有,,且当时,,则()A. B.C. D.4.若a,b是实数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件5.函数y=ax﹣2+1(a>0且a≠1)的图象必经过点A.(0,1) B.(1,1)C.(2,0) D.(2,2)6.已知集合,,若,则A. B.C. D.7.函数()的最大值为()A. B.1C.3 D.48.函数的定义域是()A.(-2,] B.(-2,)C.(-2,+∞) D.(,+∞)9.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.2410.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是()A. B.C. D.11.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt12.函数的零点在A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若函数是定义在上的奇函数,且满足,当时,,则__________.14.函数是幂函数,且当时,是减函数,则实数=_______15.已知函数,,若不等式恰有两个整数解,则实数的取值范围是________16.向量与,则向量在方向上的投影为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知直线经过直线与直线的交点,且与直线垂直.(1)求直线的方程;(2)若直线与圆相交于两点,且,求的值.18.2015年10月5日,我国女药学家屠呦呦获得2015年诺贝尔医学奖.屠呦呦和她的团队研制的抗疟药青蒿素,是科学技术领域的重大突破,开创了定疾治疗新方法,挽救了全球特别是发展中国家数百万人的生命,对促进人类健康、减少病痛发挥了难以估量的作用.当年青蒿素研制的过程中,有一个小插曲:虽然青蒿素化学成分本身是有效的,但是由于实验初期制成的青蒿素药片在胃液中的溶解速度过慢,导致药片没有被人体完全吸收,血液中青蒿素的浓度(以下简称为“血药浓度”)的峰值(最大值)太低,导致药物无效.后来经过改进药片制备工艺,使得青蒿素药片的溶解速度加快,血药浓度能够达到要求,青蒿素才得以发挥作用.已知青蒿素药片在体内发挥作用的过程可分为两个阶段,第一个阶段为药片溶解和进入血液,即药品进入人体后会逐渐溶解,然后进入血液使得血药浓度上升到一个峰值;第二个阶段为吸收和代谢,即进入血液的药物被人体逐渐吸收从而发挥作用或者排出体外,这使得血药浓度从峰值不断下降,最后下降到一个不会影响人体机能的非负浓度值.人体内的血药浓度是一个连续变化的过程,不会发生骤变.现用t表示时间(单位:h),在t=0时人体服用青蒿素药片;用C表示青蒿素的血药浓度(单位:μg/ml).根据青蒿素在人体发挥作用的过程可知,C是t的函数.已知青蒿素一般会在1.5小时达到需要血药浓度的峰值.请根据以上描述完成下列问题:(1)下列几个函数中,能够描述青蒿素血药浓度变化过程的函数的序号是___________.①C②C③C④C(2)对于青蒿素药片而言,若血药浓度的峰值大于等于0.1μg/ml,则称青蒿素药片是合格的.基于(1)中你选择的函数(若选择多个,则任选其中一个),可判断此青蒿素药片___________;(填“合格”、“不合格”)(3)记血药浓度的峰值为Cmax,当C≥12Cmax时,我们称青蒿素在血液中达到“有效浓度”,基于(1)中你选择的函数(若选择多个,则任选其中一个),计算青蒿素在血液中达到19.函数的定义域为,定义域为.(1)求;(2)若,求实数的取值范围.20.对于定义在上的函数,如果存在实数,使得,那么称是函数的一个不动点.已知(1)当时,求的不动点;(2)若函数有两个不动点,,且①求实数的取值范围;②设,求证在上至少有两个不动点21.某班级欲在半径为1米的圆形展板上做班级宣传,设计方案如下:用四根不计宽度的铜条将圆形展板分成如图所示的形状,其中正方形ABCD的中心在展板圆心,正方形内部用宣传画装饰,若铜条价格为10元/米,宣传画价格为20元/平方米,展板所需总费用为铜条的费用与宣传画的费用之和(1)设,将展板所需总费用表示成的函数;(2)若班级预算为100元,试问上述设计方案是否会超出班级预算?22.已知函数是偶函数,且,.(1)当时,求函数的值域;(2)设,,求函数的最小值;(3)设,对于(2)中的,是否存在实数,使得函数在时有且只有一个零点?若存在,求出实数的取值范围;若不存在,请说明理由.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据函数的特征,建立不等式求解即可.【详解】要使有意义,则,所以函数的定义域是.故选:B2、C【解析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.3、A【解析】由和可得函数的周期,再利用周期可得答案.【详解】由得,所以,即,所以的周期为4,,由得,所以故选:A.4、B【解析】由对数函数单调性即可得到二者之间的逻辑关系.【详解】由可得;但是时,不能得到.则是的必要不充分条件故选:B5、D【解析】根据a0=1(a≠0)时恒成立,我们令函数y=ax﹣2+1解析式中的指数部分为0,即可得到函数y=ax﹣2+1(a>0且a≠1)的图象恒过点的坐标解:∵当X=2时y=ax﹣2+1=2恒成立故函数y=ax﹣2+1(a>0且a≠1)的图象必经过点(2,2)故选D考点:指数函数的单调性与特殊点6、A【解析】利用两个集合的交集所包含的元素,求得的值,进而求得.【详解】由于,故,所以,故,故选A.【点睛】本小题主要考查两个集合交集元素的特征,考查两个集合的并集的概念,属于基础题.7、C【解析】对函数进行化简,即可求出最值.【详解】,∴当时,取得最大值为3.故选:C.8、B【解析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解【详解】解:由,解得函数的定义域是故选:B【点睛】本题考查函数的定义域及其求法,属于基础题9、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A10、A【解析】由斜二测画法的规则知与x'轴平行或重合的线段与x’轴平行或重合,其长度不变,与y轴平行或重合的线段与x’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A选项符合题意.故应选A考点:斜二测画法点评:注意斜二测画法中线段长度的变化11、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D12、B【解析】利用零点的判定定理检验所给的区间上两个端点的函数值,当两个函数值符号相反时,这个区间就是函数零点所在的区间.【详解】函数定义域为,,,,,因为,根据零点定理可得,在有零点,故选B.【点睛】本题考查函数零点的判定定理,本题解题的关键是看出函数在所给的区间上对应的函数值的符号,此题是一道基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、##【解析】由,可得函数是以为一个周期的周期函数,再根据函数的周期性和奇偶性将所求转化为已知区间即可得解.【详解】解:因为,所以函数是以为一个周期的周期函数,所以,又因为函数是定义在上的奇函数,所以,所以.故答案为:.14、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值15、.【解析】因为,所以即的取值范围是.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等16、【解析】在方向上的投影为考点:向量的投影三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)或.【解析】(1)由解得P的坐标,再求出直线斜率,即可求直线的方程;(2)若直线与圆:相交由垂径定理列方程求解即可.【详解】(1)由得所以.因为,所以,所以直线的方程为,即.(2)由已知可得:圆心到直线的距离为,因为,所以,所以,所以或.【点睛】直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小18、(1)④(2)合格(3)4-【解析】(1)先分析函数Ct(2)作差比较进行判断;(3)令C(t)≥0.1ln2.5【小问1详解】解:根据题意,得函数CtA.函数Ct在[0,1.5)上单调递增,在[1.5,+B.当t=1.5时,函数Ct取得最大值;函数CC.函数Ct选择①:Ct因为C3=0.75-0.3×3=-0.15不满足条件所以①不能描述青蒿素血药浓度变化过程;选择②:Ct当0≤t<15时,Ct当t=1时,函数Ct取得最大值,不满足条件B所以②不能描述青蒿素血药浓度变化过程;选择③:Ct因为0.3e0.3ln所以不满足条件C,所以③不能描述青蒿素血药浓度变化过程;选择④:Ct因为0.2ln且当t≥1.5时,Ct所以Ct即④能描述青蒿素血药浓度变化过程;综上所述,能够描述青蒿素血药浓度变化过程的函数的序号是④.【小问2详解】解:由(1)得:函数④:C因为0.2ln即血药浓度的峰值大于0.1μg/ml,所以此青蒿素药片合格,即答案为:合格;【小问3详解】解:当0≤t<1.5时,令0.2ln所以ln(t+1)2≥即2t2+4t-3≥0,解得t≥即-2+10当t≥1.5时,令0.3ln则3t≥1,解得即1.5≤t≤3;综上所述,青蒿素在血液中达到“有效浓度”的持续时间为3--2+19、(1);(2).【解析】(1)求函数的定义域,就是求使得根式有意义的自变量的取值范围,然后求解分式不等式即可;(2)因为,所以一定有,从而得到,要保证,由它们的端点值的大小列式进行计算,即可求得结果.【详解】(1)要使函数有意义,则需,即,解得或,所以;(2)由题意可知,因为,所以,由,可求得集合,若,则有或,解得或,所以实数的取值范围是.【点睛】该题考查的是有关函数的定义域的求解,以及根据集合之间的包含关系确定参数的取值范围的问题,属于简单题目.20、(1)的不动点为和;(2)①,②证明见解析.【解析】(1)当时,函数,令,即可求解;(2)①由题意,得到的两个实数根为,,设,根据二次函数的图象与性质,列出不等式即可求解;②把可化为,设的两个实数根为,,根据是方程的实数根,得出,结合函数单调性,即可求解.【详解】(1)当时,函数,方程可化为,解得或,所以的不动点为和(2)①因为函数有两个不动点,,所以方程,即的两个实数根为,,记,则的零点为和,因为,所以,即,解得.所以实数的取值范围为②因为方程可化为,即因为,,所以有两个不相等的实数根设的两个实数根为,,不妨设因为函数图象的对称轴为直线,且,,,所以记,因为,且,所以是方程的实数根,所以1是的一个不动点,,因为,所以,,且的图象在上的图象是不间断曲线,所以,使得,又因为在上单调递增,所以,所以是的一个不动点,综上,在上至少有两个不动点【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论