版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内江市2023年初中学业水平考试暨高中阶段学校招生考试试卷
数学
本试卷分为A卷和B卷两部分,A卷1至4页,满分100分;B卷5至6页,满分60分.全
卷满分160分.考试时间120分钟.
注意事项:
1.答题前请仔细阅读答题卡上的注意事项.
2.所有试题的答案必须按题考填写在答题卡相应的位置上,在试卷上、草稿纸上答题无
效.
3.考试结束后,监考人员将试卷和答题卡一并收回.
A卷(共100分)
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有
一项是符合题目要求的.)
1.-2的绝对值是()
11
A.2B.;C.——D.-2
2
【答案】A
【解析】
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.
【详解】解:在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,
故选:A.
2.作为世界文化遗产的长城,其总长大约是6700000m,将6700000用科学记数法表示为()
A.6.7xlO5B.6.7xlO6C.0.67xlO7D.67x108
【答案】B
【解析】
【详解】670(X)00=6.7x106
故选B.
点睛:此题主要考查了用科学记数法表示较大的数,一般形式为axlO",其中l<|a|<10,确定a与n的值
是解题的关键.
3.如图是由5个完全相同的小正方体堆成的物体,其主视图是()
【答案】A
【解析】
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【详解】解:从正面看易得左边一列有2个正方形,中间与右边一列各有一个正方形.
故选:A.
【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
4.下列计算正确的是()
A.3a+4b=1abB.x。♦/=JC6
C.(«+2)2=〃+4D.(必3)3=m6
【答案】B
【解析】
【分析】根据同类项的定义、同底数基的除法性质、完全平方公式、积的乘方公式进行判断.
【详解】解:A、3a和4〃不是同类项,不能合并,所以此选项不正确;
B、十,所以此选项正确;
C、(“+2)2-2+40+4,所以此选项不正确;
D、(ab3)3=相卜,所以此选项不正确;
故选:B.
【点睛】本题主要考查了合并同类项、同底数幕的除法、完全平方公式、积的乘方,熟练掌握运算法则
是解题的关键.
5.下列图形中,既是轴对称图形,又是中心对称图形的是()
【答案】A
【解析】
【分析】根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转18()。,如果旋
转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直
线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】解:A、既是轴对称图形,又是中心对称图形,符合题意;
B、既不是轴对称图形,也不是中心对称图形,不符合题意;
C、是轴对称图形,不是中心对称图形,不符合题意;
D、不是轴对称图形,是中心对称图形,不符合题意,
故选:A.
【点睛】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称图形的关键是寻找对称轴,图形两部
分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180。后与原图重合是关键.
6.函数y=五=1的自变量x的取值范围在数轴上可表示为()
A.11•B.上♦C.“1,1.
01201202
D._i_________।>
02
【答案】D
【解析】
【分析】根据二次根式有意义的条件,求出0的解集,再在数轴上表示即可.
【详解】解:77口中,x-l>0,
.\x>1,
故在数轴上表示为:
II.
012
故选:D.
【点睛】本题考查了在数轴上表示不等式的解集,要注意,不等式的解集包括L
7.某校举行“遵守交通安全,从我做起”演讲比赛.7位评委给选手甲的评分如下:91,95,89,93,
88,94,95,则这组数据的众数和中位数分别是()
A.95,92B.93,93C.93,92D.95,93
【答案】D
【解析】
【分析】根据众数和中位数的定义求解.
【详解】解:这组数据从小到大排序为:88,89,91,93,94,95,95,
95出现了2次,出现次数最多,所以这组数据的众数为95;
这组数据最中间数为93,所以这组数据的中位数是93.
故选:D.
【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频
数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.也考查了中位数:将一
组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.
8.如图,正六边形ABCDEF内接于O,点P在4尸上,。是的中点,则NCPQ的度数为
A.30°B.36°C.45°D.60°
【答案】C
【解析】
【分析】先计算正六边形的中心角,再利用同圆或等圆中,等弧对的圆心角相等,圆周角定理计算即可.
(详解】如图,连接OC,OD,OQ,OE,
•.•正六边形ABCDEF,。是OE的中点,
36001
ZCOD=乙DOE==60°,ZDOQ=ZEOQ=-NDOE=30°,
/.ZCOQ=ZCOD+ZDOQ=90°,
Z.ZCPQ=^ZCOQ=45°,
故选C.
【点睛】本题考查了正多边形与圆,圆周角定理,熟练掌握正多边形中心角计算,圆周角定理是解题的关
键.
9.用计算机处理数据,为了防止数据输入出错,某研究室安排两名程序操作员各输入一遍,比较两人的输
入是否一致,本次操作需输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输
完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x个数据,根据题意得方程正确的是
()
26402640.26402640。
A.-------=----------1-2B.
2xx2xx
2640264026402640/
C.+2x60D.------=----------2nx60
2xx2xx
【答案】D
【解析】
分析】设乙每分钟能输入x个数据,则甲每分钟能输入2x个数据,根据“甲比乙少用2小时输完”列出
分式方程即可.
【详解】解:设乙每分钟能输入x个数据,则甲每分钟能输入2x个数据,
/曰264026406〈八
由题意得-----=-------2x60,
2xx
故选:D.
【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
10.如图,在一ABC中,点。、E为边AB的三等分点,点F、G在边8C上,AC//DG//EF,点”为
AF与0G的交点.若4。=12,则。”的长为()
ADfi
3
A.1B.-C.2D.3
2
【答案】C
【解析】
【分析】由三等分点的定义与平行线的性质得出5E=Z5E=A。,BF=GF=CG,AH=HF>DH是
EFBE1
△AEE的中位线,易证产得一=一,解得所=4,则DH=—EF=2.
ACAB2
【详解】解:D、E为边A8的三等分点,EF〃DG〃AC,
:.BE=DE=AD,BF=GF=CG,AH=HF,
:.AB=3BE,DH是△AEE的中位线,
:.DH=-EF,
2
EF〃AC,
ZBEF=ABAC,NBFE=ZBCA,
:.ABEFsABAC,
EFBEEFBE
:.=——,即nn——=,
ACAB123BE
解得:EF=4,
:.DH=-EF=-x4=2,
22
故选:C.
【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知
识;熟练掌握相似三角形的判定与性质是解题的关键.
11.对于实数m匕定义运算“⑤”为=例如3③2=2?-3x2=—2,则关于x的方程
伏-3)G>x=k—1的根的情况,下列说法正确的是()
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
【答案】A
【解析】
【分析】先根据新定义得到关于x的方程为f—化—3)x+l-k=0,再利用一元二次方程根的判别式求
解即可.
【详解】解:•••(<-3)®x=J-1,
尤2—(k—3)x=Z—1,
x2—(Z—3)%+1—k—0,
/.A二〃2-4。°'=(左一3)2—4(1—左)=%2一6%+9—4+44=(左一1)2+4>(),
方程V—伏-3)x+l—左=0有两个不相等的实数根,
故选A.
【点睛】本题主要考查了一元二次方程根判别式,新定义下的实数运算,正确得到关于光的方程为
f一(左-3)x+l-A=0是解题的关键.
o1
fC_2X2_2
2x24
12.对于正数规定/⑸二0'例如:/(2)==-
2
2x33=:,计算:
/⑶-
3+T22
/岛W焉卜/仁卜+吗卜出卜/(1)
/(2)+/(3)++/(99)+/(100)+/(101)=()
A.199B.200C.201D.202
【答案】C
【解析】
【分析】通过计算/(I)=1,/(2)+/W=2,/(3)+/[|J=2,…可以推出
+/[3)+/[I]+,⑴+/(2)+/(3)++"99)+"100)+/(101)
结果.
【详解】解:/(1)=-=1,
1+1
/(2)=4,,小]=二=2"(2)+小]=2,
1+23⑴1+13⑶
2
2x1]
/⑶二言=1十8"⑶+/2,
1+-/
3
ox-----
2x100200*1)=100
/(100)=—,/(100)+/(—)=2,
101J100
1+100101,1001+x
100
+f(l)+f(2)+f(3)++/(99)+/(100)+/(101)
=2xl(X)+l
=201
故选:c.
【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.
二、填空题(本大题共4小题,每小题5分,共20分.)
13.分解因式:x3-xy2=.
【答案】x(x+y)(x-y)
【解析】
【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.
【详解】解:x3-xy2=x(x2-y2)=x(x+y)(x-y),
故答案为:x(x+y)(x-y).
【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再
用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
14.若。、人互为相反数,c,为8的立方根,则2a+2一c=.
【答案】-2
【解析】
【分析】利用相反数,立方根的性质求出a+8及c的值,代入原式计算即可得到结果.
【详解】解:根据题意得:a+b=0,c=2,
2a+2b-c—0—2——2,
故答案为:一2
【点睛】此题考查了代数式求值,相反数、立方根的性质,熟练掌握运算法则是解本题的关键.
15.如图,用圆心角为12()。半径为6的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的高是
120°
【答案】472.
【解析】
【分析】由圆心角为120。,半径为6的扇形求弧长=4万,可求圆锥底面圆周长:2%r=4乃,解得厂=2,
如图由圆锥高。£»,底面圆半径。C,与母线OC构成直角三角形,由勾股定理
OD=yj0C2-CD2=A/62-22=40即可•
【详解】解:圆心角为120。,半径为6的扇形弧长=120=*°=4万,
180
圆锥底面圆周长:2兀r=4兀,
解得尸=2,
如图由圆锥高OD,底面圆半径。C,与母线OC构成直角三角形,
由勾股定理OD=40C2-CET=762-22=472-
这个圆锥的高是4夜.
故答案为:472.
【点睛】本题考查扇形弧长公式,圆的周长,勾股定理,掌握扇形弧长公式,圆的周长,勾股定理是解题
关键.
16.出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图
形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的
重要内容之一、如图,在矩形A3CD中,AB=5,40=12,对角线AC与3。交于点。,点E为BC
边上的一个动点,EF1AC,EG上BD,垂足分别为点F,G,则=
【答案】—##4—
1313
【解析】
【分析】连接。E,根据矩形的性质得到3C=AO=12,A0=C0=B0=£>0,ZABC=9()°,根据勾
_________________1a
股定理得到AC=1AB?+83=13,求得OB=OC=m,根据三角形的面积公式即可得到结论.
【详解】解:连接。£,
四边形A3CO是矩形,
ZABC^90°,BC=AD=12,AO=CO=BO=DO,
,AB=5,BC=12,
:.AC=\IAB2+BC2=13>
13
:.OB=OC=—,
2
SHR(Myc=SHRuOtFt+S.COF~—2xOB,EGH—2OC,EF——2SA[bi。C——2x—2x5xl2=15,
,113nl13__,113/cy
..—x-EG+—x-EF=—x一(EG+EF)=\5,
222222
:.EG+EF=—,
13
....、r60
故答案为:—.
13
【点睛】此题考查了矩形的性质、勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合
思想的应用.
三、解答题(本大题共5小题,共4分.解答应写出必要的文字说明或推演步骤.)
17.计算:(一1严23++3tan30°—(3—乃)°+|有一2|
【答案】4
【解析】
【分析】根据有理数乘方、特殊角三角函数值、负整数指数暴、零指数幕结合二次根式混合运算法则进行
计算即可.
【详解】解:(―1严+3tan3O。—(3—乃)°+|石—2|
=-l+4+3x—-1+2-^
3
=-1+4+百一1+2-百
=4.
【点睛】本题考查了有理数乘方、特殊角三角函数值、负整数指数累、零指数幕以及二次根式的混合运算,
熟练掌握相关运算法则是解本题的关键.
18.如图,在ABC中,。是3c的中点,E是AD的中点,过点A作A产〃交CE的延长线于点F.
(2)连接所,若A8=AC,求证:四边形58尸是矩形.
【答案】(1)见解析;
(2)见解析;
【解析】
【分析】(1)根据两直线平行,内错角相等求出NAEE=N0CE,然后利用“角角边”证明三角形全等,
再由全等三角形的性质容易得出结论;
(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBZ)是平行四边形,再根据一个角是
直角的平行四边形是矩形判定即可.
【小问1详解】
证明:
/.ZAFE=ADCE,
•••点E为AO的中点,
/•AE=DE,
在ZsAEE和△瓦)C中,
ZAFE=ZDCE
<NAEF=NDEC,
AE=DE
:.,.E4F^,£DC(AAS);
AF^CD,
■:CD=BD,
;•AF=BD;
【小问2详解】
证明:.AF//BD,AF=BD,
四边形AFBD是平行四边形,
VAB=AC,BD=CD,
:.ZAD5=90°,
.•.平行四边形AF8O是矩形.
【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个
角是直角的平行四边形是矩形是解本题的关键.
19.某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且
只参加一类活动):A.音乐社团;B.体育社团:C.美术社团;D.文学社团;E.电脑编程社团,该校
为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了
如图所示的两幅不完整的统计图.
(1)此次调查一共随机抽取了名学生,补全条形统计图(要求在条形图上方注明人数);
(2)扇形统计图中圆心角a=度;
(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表
或画树状图的方法求出恰好选中甲和乙两名同学的概率.
【答案】(1)200,补全条形统计图见解析
(2)54(3)恰好选中甲、乙两名同学的概率为J.
【解析】
【分析】(1)用B类型社团的人数除以其人数占比即可求出参与调查的总人数;用总人数减去A、8、。、
E四个类型社团的人数得到C类型社团的人数,即可补全条形统计图;
(2)用360。乘以C类型社团的人数占比即可求出扇形统计图中a的度数;
(3)先画出树状图得到所有等可能性的结果数,再找到恰好选中甲和乙两名同学的结果数,最后依据概率
计算公式求解即可.
【小问1详解】
解:50+25%=200(人),
C类型社团的人数为200-30-50-70-20=30(人),
故答案为:200;
【小问2详解】
解:a=360°x——=54°,
200
故答案为:54;
【小问3详解】
解:画树状图如下:
•••共有12种等可能的结果,其中恰好选中甲、乙两名同学的结果有2种,
恰好选中甲、乙两名同学的概率为2=二.
126
【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,正确读懂统
计图并画出树状图或列出表格是解题的关键.
20.某中学依山而建,校门A处有一坡角。=30。的斜坡AB,长度为30米,在坡顶8处测得教学楼CE
的楼顶C的仰角NCBF=45°,离B点4米远的E处有一个花台,在E处测得C的仰角NCEF=60°,
CT的延长线交水平线AM于点。,求OC的长(结果保留根号).
教
学
楼
【解析】
【分析】作3N_LAM于点N,首先根据坡度求出BN,并通过矩形的判定确定出。尸=8/V,然后通过
解三角形求.4',CF,即可相加得出结论.
【详解】解:如图所示,作BN_L4〃于点N,则由题意,四边形尸为矩形,
・・•在Rt^ABN中,sinZBAN=—,ZBAN=a=30°,AB=3(),
AB
:.8N=A5.sin300=30xL15,
2
•..四边形BNQ尸为矩形,
DF=BN=T5,
由题意,NCBF=45°,NC£F=60°,NCFB=90°,BE=4,
.••VCM为等腰直角三角形,BF=CF,
设BF=CF=x,则=B/一=4,
CF
在RtZ\C£尸中,tanZC£F=——,
EF
:.tan60°=—,B|J:百
x-4x-4
解得:x=6+2g,经检验,x=6+26是上述方程的解,且符合题意,
/.BF=CF=6+2班,
,OC=CE+OE=6+2百+15=21+26,
DC的长为(21+2班)米.
【点睛】本题考查解直角三角形的应用,准确构造出直角三角形并求解是解题关键.
21.如图,在平面直角坐标系中,一次函数'=〃优+〃与反比例函数>=人的图象在第一象限内交于
X
A®4)和8(4,2)两点,直线AB与x轴相交于点C,连接。4.
(1)求一次函数与反比例函数的表达式;
k
(2)当x>0时,请结合函数图象,直接写出关于x的不等式皿+〃,一的解集;
x
(3)过点8作平行于x轴,交。4于点。,求梯形OCRD的面积.
Q
【答案】(1)反比例函数为:y=—,一次函数为y=-x+6.
x
(2)2<x<4
(3)9
【解析】
Q
【分析】(1)利用8(4,2)可得反比例函数为y=一,再求解A(2,4),再利用待定系数法求解一次函数的解
x
析式即可;
(2)由一次函数的图象在反比例函数图象的上方,结合x>0可得答案;
(3)求解。4的解析式为:y=2x,结合过点B作BD平行于x轴,交。4于点。,B(4,2),可得£)(1,2),
BD=4—1=3,由A6为y=-x+6,可得C(6,0),0C=6,再利用梯形的面积公式进行计算即可.
【小问1详解】
解:•.•反比例函数y=人过B(4,2),
X
k=8,
Q
・••反比例函数为:》=一,
X
把A(Q,4)代入y=-可得:a=-=2,
x4
・・・A(2,4),
2m+n=4m=-l
解得:*
4m+〃=2n=6
,一次函数为y=-x+6.
【小问2详解】
由一次函数的图象在反比例函数图象的上方,结合x>0可得
k
不等式/nx+〃?一的解集为:2WxW4.
x
【小问3详解】
•;A(2,4),同理可得的解析式为:y=2x,
•••过点B作BO平行于x轴,交。4于点。,以4,2),
%=2,
/.xD=\,即£>(1,2),
30=4—1=3,
AB为y=-x+6,
当y=0,则x=6,即C(6,0),
:.0C=6,
.••梯形OCBO的面积为:;(3+6)x2=9.
【点睛】本题考查是利用待定系数法求解一次函数与反比例函数的解析式,利用图象解不等式,坐标与
图形面积,熟练的利用数形结合的方法解题是关键.
B卷
四、填空题(本大题共4小题,每小题6分,共24分.)
22.已知。、b是方程/+3%-4=0的两根,则。2+4。+》-3=.
【答案】-2
【解析】
【分析】利用一元二次方程解的定义和根与系数的关系,可得。+匕=-3,片+3。-4=0,从而得到
4+3a=4,然后代入,即可求解.
【详解】解:,•7,一是方程x2+3x-4=0的两根,
・二。+。=—3,4+3。-4=0,
片+3。=4,
,/+4。+力一3
-cr+3。+。+力一3
=4+(—3)—3
=—2・
故答案为:一2.
【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义
和根与系数的关系是解题的关键.
23.在中,NA、NB、NC的对边分别为a、b、c,且满足/+|c-1()|+=i=12a-36,贝U
sinB的值为.
4
【答案】y##0.8
【解析】
【分析】由"+|c-10|+>/^万=12。一36,可得(a—6『+|c—10|+>^^=0,求解。=6,h=8,c=l(),
证明NC=90。,再利用正弦的定义求解即可.
【详解】解:V«2+|c-10|+7^-8=12a-36,
cr-12a+36+|c-10|+yjh—8=0,
(a-6)2+=0,
:.a-6=0,c—10=(),Z?—8=0,
解得:a=6,Z?=8,c=10,
222222
a+/?=6+8=100=10=c.
ZC=90°,
R_b_8_4
c105
4
故答案为:—.
【点睛】本题考查的是利用完全平方公式分解因式,算术平方根,绝对值,偶次方的非负性,勾股定理的
逆定理的应用,锐角的正弦的含义,证明NC=90。是解本题的关键.
24.如图,四边形ABC0是边长为4的正方形,△BPC是等边三角形,则阴影部分的面积为
【答案】12-46##-4百+12
【解析】
【分析】作PM_LOC于M点,PNL3C于N点,首先求出正方形的面积,然后根据等边三角形和正方
形的性质求出和PN,从而求出4PBe和_。。。的面积,最后作差求解即可.
【详解】解:如图所示,作PM_L£>C于〃点,PN工BC于N点、,
•••四边形ABCD是边长为4的正方形,
;.ZBCD=90。,BC=CD=4,S正方形桢。。=4x4=16,
•••△5PC是等边三角形,
/BCP=60°,BC=CP=4,BN=CN=2,
;•PN=4CP--CN2=2石-
SPBC=;BC,PN=;又4又26=46,
•;NBCD=90°,ZBCP=60°,
ZPCM=30°,
...在RtPCM中,PM=LCP=2,
2
AS=-C£).PM=-x4x2=4,
pPCrDn22
•"S阴影=S正方形ABC。一SPBC-SPCD,
•••5阴影=16-46-4=12-46,
故答案为:12-4宕.
【点睛】本题考查正方和等边三角形的性质,以及30。角所对的直角边是斜边的一半,掌握图形的基本性
质,熟练运用相关性质是解题关键.
25.如图,在平面直角坐标系中,O为坐标原点,MN垂直于x轴,以MN为对称轴作..QDE的轴对称图
k
形,对称轴与线段OE相交于点R点。的对应点B恰好落在反比例函数y=—(x<0)的图象上,点
x
0、E的对应点分别是点C、A.若点4为OE的中点,且则%的值为.
【答案】一6
【解析】
【分析】连接3。,设AG=£G=a,由对称的性质知EC=AO=AE=2a,AC=EO=4a,利用相
似三角形的判定和性质求得SAE”=’
xl6=2,则&AC8=2,根据SMCB=S/kACB+以及反比例
函数的几何意义求解即可.
【详解】解:连接BO,
CEG\Ao\X
设对称轴MN与x轴交于点G,
ODE与△C8A关于对称轴MN,
:.AG=EG,4C=E0,EC=AO
•.•点A为OE的中点,
设AG=EG=a,则EC=AO=AE=2a,
AC=EO=4a,
1
%-
4-
11
----
F2卬8
■G
■:GFOD,
・・・△EFGS^EDO,
•*,^^EOD=-x16=2,
•q-9
VAC-4ci,AO-2a,
••S^OCB=S^ACB+S=8=2+1=3,
,那=3,
':k<0,
k=—6,
故答案为:—6.
【点睛】本题考查了轴对称的性质、中点的定义、相似三角形的判定和性质、反比例函数的定义等内容,
解决本题的关键是牢记相关定义与性质,能根据题意在图形中找到对应关系,能挖掘图形中的隐含信息
等,本题蕴含了数形结合的思想方法等.
五、解答题(本大题共3小题,每小题12分,共36分.解答应写出必要的文字说明或推演
步骤.)
26.如图,以线段A3为直径作।O,交射线AC于点C,A0平分/C43交。于点。,过点。作直
线。E1AC,交AC的延长线于点E,交的延长线于点F.连接并延长交AC的延长线于点
M.
M
(1)求证:直线。石是O。的切线;
(2)当/尸=30。时,判断的形状,并说明理由;
(3)在(2)的条件下,ME=1,连接BC交A£>于点P,求的长.
【答案】(1)见解析(2).A3A/是等边三角形,理由见解析
(3)AP=-y/3.
3
【解析】
【分析】(1)证明0D〃4C,可推出ODIDE,即可证明直线OE是O的切线;
(2)证明Nl=N2=30°,NCBD=N1=3O°,得到NABC=30。,据此计算即可证明结论成立;
(3)利用含30度的直角三角形的性质求得Affi)=2,得到等边的边长,在Rt_ACP中,利用余弦
函数即可求解.
【小问1详解】
证明:连接QD,
•••N1=N2,
OA-OD,
/.N3=N2,
Z3=Z1,
/.OD//AC,
DEIAC,
OD1DE,
0D是「。的半径,
.••直线是:。的切线;
【小问2详解】
解:是等边三角形,理由如下:
VDEJ.AC,ZF=30°,
ZE4F=60°,
/.Nl=N2=30。,
NCBO=N1=30。,
为;。的直径,
ZACB=90°,
ZABC=900-ZEAF=30°,
ZABM=ZABC+ZCBD=60°,
,AAW是等边三角形;
【小问3详解】
解:是等边三角形,
:.ZM=60°,则NMDE=30°,
;.MD=2ME=2,
;.AB=MB=4,
为。。的直径,ZABC=30°,
AC=-AB=2,
2
Ar2
•••Z1=30°,cosZl=——,即cos30。=—,
APAP
:.AP=-yf3.
3
【点睛】此题考查了圆和三角形的综合题,切线的判定,直径所对的圆周角为直角,等腰三角形的性质和
判定,解直角三角形等知识,解题的关键是熟练掌握以上知识点.
27.某水果种植基地为响应政府号召,大力种植优质水果.某超市看好甲、乙两种优质水果的市场价值,
经调查,这两种水果的进价和售价如下表所示:
水果种类进价(元千克)售价(元)千克)
甲a20
乙b23
该超市购进甲种水果15千克和乙种水果5千克需要305元;购进甲种水果20千克和乙种水果10千克需要
470元.
(1)求“,匕的值;
(2)该超市决定每天购进甲、乙两种水果共100千克进行销售,其中甲种水果的数量不少于30千克,且
不大于80千克.实际销售时,若甲种水果超过60千克,则超过部分按每千克降价3元销售.求超市当天
售完这两种水果获得的利润y(元)与购进甲种水果的数量x(千克)之间的函数关系式,并写出x的取值
范围;
(3)在(2)的条件下,超市在获得的利润y(元)取得最大值时,决定售出的甲种水果每千克降价3m
元,乙种水果每千克降价〃?元,若要保证利润率(利润率=二=)不低于16%,求烧的最大值.
Q=14
【答案】(1)\
8=19
2x+400(30<x<60)
(2)V=5
(-x+580(60<x<80)
(3)1.2
【解析】
【分析】(1)根据题意列出二元一次方程组求解即可;
(2)设购进甲种水果的数量的数量为X千克,则购进乙种水果的数量的数量为(100-X)千克,根据题意
分两种情况:30WXW60和6()KxW8(),然后分别表示出总利润即可;
(3)首先根据题意求出y的最大值,然后根据保证利润率(利润率=孝寿)不低于16%列出不等式球
解即可.
【小问1详解】
15a+58=305
由题意列方程组为:<
20a+10/?=470
解得《
b=19
【小问2详解】
设购进甲种水果的数量的数量为x千克,则购进乙种水果的数量的数量为(100—x)千克,
,当30«xW60时,
y=(2()-14)x+(23-19)(100—x)=2x+400;
当60<xW80时,
y=(20-14)x60+(20-3-14)“一60)+(23-19)(100-力=一%+580;
2x+400(30<%<60)
综上所述,'-x+580(60<x<80)
【小问3详解】
当30WXW60时,y=2x+4(X),
.,.当x=60时,y取最大值,此时y=2x60+400=520(元),
当60<xW80时,y=-x+58O,
“<—60+580=520(元),
由上可得:当x=60时,J取最大值520(元),
52。-3s6。-4。6%
由题意可得,
60x14+40x19
,解得加41.2.
•••〃?的最大值为1.2.
【点睛】此题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,解题的关键是正
确分析题目中的等量关系.
28.如图,在平面直角坐标系中,抛物线y=+法+c与x轴交于B(4,0),C(—2,0)两点.与y轴交
于点4(0,-2).
(1)求该抛物线的函数表达式;
(2)若点P是直线下方抛物线上的一动点,过点P作x轴的平行线交AB于点K,过点P作y轴的平
行线交X轴于点D,求与LPK+PD的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁科技大学《中外戏剧鉴赏》2023-2024学年第一学期期末试卷
- 昆明理工大学《五官科护理学》2023-2024学年第一学期期末试卷
- 江苏农林职业技术学院《金融建模与计算》2023-2024学年第一学期期末试卷
- 吉林工程职业学院《植物食品加工工艺学》2023-2024学年第一学期期末试卷
- 湖南女子学院《材料分析测试原理》2023-2024学年第一学期期末试卷
- 【物理】第十章 浮力 单元练习+-2024-2025学年人教版物理八年级下册
- 黑龙江能源职业学院《政治学导论》2023-2024学年第一学期期末试卷
- 高考物理总复习《电磁感应规律及应用》专项测试卷含答案
- 重庆五一职业技术学院《导航与制导系统》2023-2024学年第一学期期末试卷
- 重庆工贸职业技术学院《测绘学概论》2023-2024学年第一学期期末试卷
- 2024光储充一体化系统解决方案
- 建筑幕墙物理性能分级
- 河南省2024年道法中考热点备考重难专题:发展航天事业建设航天强国(课件)
- 临床诊疗规范与操作指南制度
- DLT 5285-2018 输变电工程架空导线(800mm以下)及地线液压压接工艺规程
- 新员工入职培训测试题附有答案
- 劳动合同续签意见单
- 大学生国家安全教育意义
- 2024年保育员(初级)培训计划和教学大纲-(目录版)
- 河北省石家庄市2023-2024学年高二上学期期末考试 语文 Word版含答案
- 企业正确认识和运用矩阵式管理
评论
0/150
提交评论