




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省台州市椒江区书生中学中考四模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.下列运算结果是无理数的是()A.3× B. C. D.2.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为()A.5 B.7 C.8 D.103.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.60584.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A. B. C. D.5.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30° B.2,60° C.1,30° D.3,60°6.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A. B. C. D.7.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米 B.200米 C.220米 D.100米8.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a59.估计﹣1的值在()A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间10.下列各数3.1415926,,,,,中,无理数有()A.2个 B.3个 C.4个 D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B的动弦,则弦CD的最小值为_____.12.圆柱的底面半径为1,母线长为2,则它的侧面积为_____.(结果保留π)13.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.14.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.15.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.16.已知直线与抛物线交于A,B两点,则_______.三、解答题(共8题,共72分)17.(8分)“千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔B:兵马俑C:陕西历史博物馆D:秦岭野生动物园E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.18.(8分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.19.(8分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN并延长MN交EF于点O.求证:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.20.(8分)计算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);21.(8分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.(3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.22.(10分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m=;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为;已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.23.(12分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.24.如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;(2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值(3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】
根据二次根式的运算法则即可求出答案.【题目详解】A选项:原式=3×2=6,故A不是无理数;B选项:原式=,故B是无理数;C选项:原式==6,故C不是无理数;D选项:原式==12,故D不是无理数故选B.【题目点拨】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.2、A【解题分析】解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.3、D【解题分析】
设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a=1+3n(n为正整数)",再代入a=2019即可得出结论【题目详解】设第n个图形有an个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴an=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【题目点拨】此题考查规律型:图形的变化,解题关键在于找到规律4、D【解题分析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【题目详解】∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故选D.【题目点拨】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.5、B【解题分析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定6、B【解题分析】
根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【题目详解】解:主视图,如图所示:.故选B.【题目点拨】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.7、D【解题分析】
在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【题目详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选D.【题目点拨】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.8、A【解题分析】
直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【题目详解】A选项:a0=1,正确;B选项:a﹣1=,故此选项错误;C选项:(﹣a)2=a2,故此选项错误;D选项:(a2)3=a6,故此选项错误;故选A.【题目点拨】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算,正确掌握相关运算法则是解题关键.9、B【解题分析】
根据,可得答案.【题目详解】解:∵,∴,∴∴﹣1的值在2和3之间.故选B.【题目点拨】本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.10、B【解题分析】
根据无理数的定义即可判定求解.【题目详解】在3.1415926,,,,,中,,3.1415926,是有理数,,,是无理数,共有3个,故选:B.【题目点拨】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题(本大题共6个小题,每小题3分,共18分)11、10【解题分析】
连接OC,当CD⊥OA时CD的值最小,然后根据垂径定理和勾股定理求解即可.【题目详解】连接OC,当CD⊥OA时CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=,∴CD=5×2=10.故答案为10.【题目点拨】本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧
.12、4【解题分析】
根据圆柱的侧面积公式,计算即可.【题目详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2πrl=2π×1×2=4π.故答案为:4π.【题目点拨】题考查了圆柱的侧面积公式应用问题,是基础题.13、9n+1.【解题分析】
∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+1;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+1;∵第1个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=10=9×1+1,…,∴第n个图中正方形和等边三角形的个数之和=9n+1.故答案为9n+1.14、【解题分析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.15、1【解题分析】
本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【题目详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【题目点拨】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.16、【解题分析】
将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x+x=-=,xx==-1”,将原代数式通分变形后代入数据即可得出结论.【题目详解】将代入到中得,,整理得,,∴,,∴.【题目点拨】此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式三、解答题(共8题,共72分)17、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.【解题分析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去B景点的人数所占的百分比即可.【题目详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“醉美旅游景点B“的学生人数为280人.【题目点拨】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.18、(1)相切;(2).【解题分析】试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.试题解析:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形OAC﹣S△OAC=.考点:直线与圆的位置关系;扇形面积的计算.19、(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)【解题分析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【题目详解】(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图所示:(3)如图,∵FD=BE,由折叠可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四边形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折叠可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折叠可得,∠C'EF=∠CEF,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=.故答案为.【题目点拨】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.20、(1)1;(2)2a+2【解题分析】
(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入原式即可求出答案.【题目详解】解:(1)原式=﹣1+2﹣+2×=1;(2)原式=a2+2a+1+1﹣a2=2a+2.【题目点拨】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.21、(1)抽样调查(2)150°(3)180件(4)【解题分析】分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=,求出P(A)..22、(1)150,(2)36°,(3)1.【解题分析】
(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【题目详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动.故答案为150,36°,1.【题目点拨】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.23、(1);(2)①2,②【解题分析】分析:(1)重合部分是等边三角形,计算出边长即可.①证明:在图3中,取AB中点E,证明≌,即可得到,②由①知,在旋转过程60°中始终有≌四边形的面积等于=.详解:(1)∵四边形为菱形,∴∴为等边三角形∴∵AD//∴∴为等边三角形,边长∴重合部分的面积:①证明:在图3中,取AB中点E,由上题知,∴又∵∴≌,∴∴,②由①知,在旋转过程60°中始终有≌∴四边形的面积等于=.点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.24、(1);6;(2)有最小值;(3),.【解题分析】
(1)先求出点B,C坐标,利用待定系数法求出抛物线解析式,进而求出点A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高端汽车维修中心场地租赁及维修技术引进合同
- 不动产抵押担保房地产开发合同
- 餐饮店面租赁及品牌升级改造合同
- 车辆安全责任事故调查与处理协议
- 产业园区厂房物业安全防范与应急处理合同
- 餐饮品牌区域代理权授权合同范本
- 生态旅游度假区租赁承租合同
- 城市综合体餐饮业态承包协议书模板
- 餐饮店店长职位竞聘与职业规划合同
- 体育健身园区场地合作开发与经营协议书
- 采购磁铁物料合同模板
- 2024年重新写抚养协议书模板
- 专题6.6射影定理专项提升训练(重难点培优)-2022-2023学年九年级数学下册尖子生培优题典(原卷版)
- 中华诗词之美学习通超星期末考试答案章节答案2024年
- 蚊蝇虫鼠害防治管理制度
- DL∕T 1811-2018 电力变压器用天然酯绝缘油选用导则
- 水泵检修工(高级)技能鉴定考试题库(含答案)
- AQ/T 9009-2015 生产安全事故应急演练评估规范(正式版)
- 泸州老窖“浓香文酿杯”企业文化知识竞赛考试题库大全-下(多选、填空题)
- 酒店运营管理 智慧树知到期末考试答案章节答案2024年山东青年政治学院
- 幼儿园课程故事开展培训
评论
0/150
提交评论