




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山市滦南县重点达标名校2024届中考数学仿真试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A.38 B.39 C.40 D.422.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.63.若分式有意义,则a的取值范围是()A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数4.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学计数法表示为()A. B. C. D.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.6.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为()A. B. C. D.7.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.2﹣2 D.4﹣28.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-23;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2A.1个B.2个C.3个D.4个9.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A. B. C. D.10.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A. B. C. D.11.计算﹣1﹣(﹣4)的结果为()A.﹣3 B.3 C.﹣5 D.512.下面的几何体中,主视图为圆的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知a2+1=3a,则代数式a+的值为.14.如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.15.如果,那么=_____.16.因式分解______.17.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组并写出它的所有整数解.20.(6分)在平面直角坐标系中,点,,将直线平移与双曲线在第一象限的图象交于、两点.(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;(2)若,①如图2,当时,求的值;②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为.21.(6分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:学生体能测试成绩各等次人数统计表体能等级调整前人数调整后人数优秀8良好16及格12不及格4合计40(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.22.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。23.(8分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).①若点A(-2,-1),则d(P,A)=;②若点B(b,2),且d(P,B)=5,则b=;③已知点C(m,n)是直线上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=2525.(10分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?26.(12分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣127.(12分)如图所示:△ABC是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】
根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.【题目详解】解:由于共有6个数据,
所以中位数为第3、4个数的平均数,即中位数为=39,
故选:B.【题目点拨】本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.2、B【解题分析】
根据三角形的中位线等于第三边的一半进行计算即可.【题目详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=12故选B.【题目点拨】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.3、A【解题分析】分析:根据分母不为零,可得答案详解:由题意,得,解得故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.4、A【解题分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】数据0.000000007用科学记数法表示为7×10-1.故选A.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、C【解题分析】
结合图形,逐项进行分析即可.【题目详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②,故选C.【题目点拨】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.6、D【解题分析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.【题目详解】连接CD,如图:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故选D.【题目点拨】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.7、C【解题分析】
先判断出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.【题目详解】解:如图,连接PF,QF,PC,QC∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故选C.【题目点拨】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.8、D【解题分析】
利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【题目详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-b2a∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【题目点拨】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.9、D【解题分析】
两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.【题目详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故答案选:D.【题目点拨】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.10、D【解题分析】根据“左加右减、上加下减”的原则,将抛物线向左平移1个单位所得直线解析式为:;再向下平移3个单位为:.故选D.11、B【解题分析】
原式利用减法法则变形,计算即可求出值.【题目详解】,故选:B.【题目点拨】本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.12、C【解题分析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】
根据题意a2+1=1a,整体代入所求的式子即可求解.【题目详解】∵a2+1=1a,∴a+=+===1.故答案为1.14、(,)【解题分析】
连接AC,根据题意易证△AOC∽△COB,则,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可.【题目详解】解:连接AC,∵A、B两点的横坐标分别为﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴点C的坐标为(0,2),∵A、B两点的横坐标分别为﹣1,4,∴设抛物线解析式为y=a(x+1)(x﹣4),把点C的坐标代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此抛物线顶点的坐标为(,).故答案为:(,).【题目点拨】本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.15、【解题分析】试题解析:设a=2t,b=3t,故答案为:16、a(3a+1)【解题分析】3a2+a=a(3a+1),故答案为a(3a+1).17、【解题分析】摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.故答案是:.18、1【解题分析】
列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【题目详解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=1故答案为:12【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、不等式组的整数解有﹣1、0、1.【解题分析】
先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【题目详解】,解不等式①可得,x>-2;解不等式②可得,x≤1;∴不等式组的解集为:﹣2<x≤1,∴不等式组的整数解有﹣1、0、1.【题目点拨】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.20、(1)作图见解析,,;(2)①k=6;②.【解题分析】
(1)根据题意,画出对应的图形,根据旋转的性质可得,,从而求出点E、F的坐标;(2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得(Ⅰ);①根据等角对等边可得,可列方程(Ⅱ),然后联立方程即可求出点D的坐标,从而求出k的值;②用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令△=0即可求出m的值,从而求出k的值.【题目详解】解:(1)点,,,,如图1,由旋转知,,,,点在轴正半轴上,点在轴负半轴上,,;(2)过点作轴于,过点作轴于,过点作于,,,,,,,,,,,,,,,,,设,,,,点,在双曲线上,,(Ⅰ)①,,,,(Ⅱ),联立(Ⅰ)(Ⅱ)解得:,,;②如图3,,,,,,,直线的解析式为(Ⅲ),双曲线(Ⅳ),联立(Ⅲ)(Ⅳ)得:,即:,△,直线与双曲线有唯一公共点,△,△,(舍或,,.故答案为:.【题目点拨】此题考查的是反比例函数与一次函数的综合大题,掌握利用待定系数法求反比例函数解析式、一次函数解析式、旋转的性质、相似三角形的判定及性质是解决此题的关键.21、(1)12;22;12;4;50;(2)详见解析;(3)1.【解题分析】
(1)求出各自的人数,补全表格即可;
(2)根据调整后的数据,补全条形统计图即可;
(3)根据“游戏”人数占的百分比,乘以1500即可得到结果.【题目详解】解:(1)填表如下:体能等级调整前人数调整后人数优秀812良好1622及格1212不及格44合计4050故答案为12;22;12;4;50;(2)补全条形统计图,如图所示:(3)抽取的学生中体能测试的优秀率为24%,则该校体能测试为“优秀”的人数为1500×24%=1(人).【题目点拨】本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.22、(1)详见解析;(2)详见解析【解题分析】
(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,再根据全等三角形的性质和等量关系即可求解;(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.【题目详解】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中点;(2)若AB=AC,则四边形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【题目点拨】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.23、(1)①6,②2或4,③1<m<4;(2)或.【解题分析】
(1)①根据“折线距离”的定义直接列式计算;②根据“折线距离”的定义列出方程,求解即可;③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知,根据图像易得t的取值范围.【题目详解】解:(1)①②∴∴b=2或4③,即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m<4(2)设E(x,y),则,如图,若点E在⊙F上,则.【题目点拨】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.24、(3)证明见试题解析;(3)3.【解题分析】试题分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直线FG是⊙O的切线.(3)先得出△ODF∽△AGF,再由cosA=25,得出cos∠DOF=2试题解析:(3)如图3,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线;(3)如图3,∵AB=AC=30,AB是⊙O的直径,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴ODAG=OFAF,∵cosA=25,∴cos∠DOF=25,∴OF=ODcos∠DOF=52考点:3.切线的判定;3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超全结婚准备清单及结婚流程
- 2025年小学教师实习报告范文-1
- 2025年风电变流器柜体系统合作协议书
- 2025年轻质建筑材料及制品项目发展计划
- 贵州省仁怀市2025届物理高二第二学期期末学业水平测试试题含解析
- 新形势下如何进行高效的专业性汽车工程师教育
- 心理学在艺术教育中的创新应用
- 教育技术为特殊儿童创造更好的学习环境
- 四川省绵阳市东辰高中2025年高一物理第二学期期末复习检测模拟试题含解析
- 商业场景下教育培训品牌的营销全案
- 汽车构造试题及答案
- 2025至2030中国摩擦材料及制动产品行业市场现状分析及竞争格局与投资发展报告
- 11人制足球竞赛规则
- 放射职业卫生培训课件
- 小学数学教学中如何培养学生数感
- 亲子消防演练活动方案
- 地理●广东卷丨2024年广东省普通高中学业水平选择性考试地理试卷及答案
- JG/T 157-2009建筑外墙用腻子
- 工程中间费协议书
- 燃气开户过户协议书
- DBJ50-T-200-2024 建筑桩基础技术标准
评论
0/150
提交评论