版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省宜昌市宜都市中考数学押题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A. B. C. D.2.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. B. C. D.3.的算术平方根为()A. B. C. D.4.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.5.若正六边形的边长为6,则其外接圆半径为()A.3 B.3 C.3 D.66.的相反数是()A. B.2 C. D.7.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.88.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为()A.20% B.11% C.10% D.9.5%9.抛物线经过第一、三、四象限,则抛物线的顶点必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.12.当x为_____时,分式的值为1.13.观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;…请按以上规律解答下列问题:(1)列出第5个等式:a5=_____;(2)求a1+a2+a3+…+an=,那么n的值为_____.14.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.15.如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.16.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.17.圆锥的底面半径为2,母线长为6,则它的侧面积为_____.三、解答题(共7小题,满分69分)18.(10分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).19.(5分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.(2)求选出的(m,n)在二、四象限的概率.20.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.21.(10分)解不等式组:3x+3≥2x+72x+422.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?23.(12分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?24.(14分)如图①,AB是⊙O的直径,CD为弦,且AB⊥CD于E,点M为上一动点(不包括A,B两点),射线AM与射线EC交于点F.(1)如图②,当F在EC的延长线上时,求证:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半径;②若△CMF为等腰三角形,求AM的长(结果保留根号).
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【题目详解】∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故选D.点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.2、A【解题分析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A.3、B【解题分析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.4、B【解题分析】
根据轴对称图形与中心对称图形的概念判断即可.【题目详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误.故选B.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【解题分析】
连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【题目详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°,∵OA=OF,∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【题目点拨】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.6、B【解题分析】
根据相反数的性质可得结果.【题目详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【题目点拨】本题考查求相反数,熟记相反数的性质是解题的关键.7、B【解题分析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.8、C【解题分析】
设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.【题目详解】解:设二,三月份平均每月降价的百分率为.根据题意,得=1.解得,(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【题目点拨】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.9、A【解题分析】
根据二次函数图象所在的象限大致画出图形,由此即可得出结论.【题目详解】∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限.故选A.【题目点拨】本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键.10、B【解题分析】
朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【题目详解】依题意得P(朝上一面的数字是偶数)=故选B.【题目点拨】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.二、填空题(共7小题,每小题3分,满分21分)11、1.【解题分析】试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.考点:整体思想.12、2【解题分析】
分式的值是1的条件是,分子为1,分母不为1.【题目详解】∵3x-6=1,
∴x=2,
当x=2时,2x+1≠1.
∴当x=2时,分式的值是1.
故答案为2.【题目点拨】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.13、49【解题分析】
(1)观察等式可得然后根据此规律就可解决问题;
(2)只需运用以上规律,采用拆项相消法即可解决问题.【题目详解】(1)观察等式,可得以下规律:,∴(2)解得:n=49.故答案为:49.【题目点拨】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.14、1【解题分析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.故答案是:1.15、(1,0);(﹣5,﹣2).【解题分析】
本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【题目详解】∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),
∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
设AG所在直线的解析式为y=kx+b(k≠0),
∴,解得.
∴此函数的解析式为y=x-1,与EC的交点坐标是(1,0);
(2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
设AE所在直线的解析式为y=kx+b(k≠0),
,解得,故此一次函数的解析式为…①,
同理,设CG所在直线的解析式为y=kx+b(k≠0),
,解得,
故此直线的解析式为…②
联立①②得
解得,故AE与CG的交点坐标是(-5,-2).
故答案为:(1,0)、(-5,-2).16、,+2.【解题分析】
当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【题目详解】当点P旋转至CA的延长线上时,如图2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP=,∵BP的中点是F,∴CF=BP=.取AB的中点M,连接MF和CM,如图2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB=2.∵M为AB中点,∴CM=AB=,∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,∴AP=AD=4,∵M为AB中点,F为BP中点,∴FM=AP=2.当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=+2.故答案为,+2.【题目点拨】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.17、12π.【解题分析】试题分析:根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.解:根据圆锥的侧面积公式:πrl=π×2×6=12π,故答案为12π.考点:圆锥的计算.三、解答题(共7小题,满分69分)18、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解题分析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,∴,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=,∴2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.19、(1)详见解析;(2)P=.【解题分析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.试题解析:(1)画树状图得:
则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2,4),(-1,2),(-1,﹣3),(1,4),(﹣3,2),(﹣3,-1),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3).
(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3),
∴所选出的m,n在第二、三四象限的概率为:P==点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.20、还需要航行的距离的长为20.4海里.【解题分析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.详解:由题知:,,.在中,,,(海里).在中,,,(海里).答:还需要航行的距离的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.21、无解.【解题分析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.22、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【解题分析】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.
(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.【题目详解】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.则生产甲种产品件,生产乙种产品件.∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【题目点拨】考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.23、(1);(2);(3)最多获利4480元.【解题分析】
(1)销售量y为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【题目详解】(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子商务装饰合同(2篇)
- 保修承诺函及服务
- 五金汽配城工程施工组织设计
- 纯净诚信无罪承诺
- 林木苗圃选购协议
- 服务订购合同签订法律适用
- 努力学习宣言
- 防滑耐磨地板采购合同
- 农家肥购买合同
- 主体模板工程劳务分包合同
- 店长数据分析能力培训
- 第11课-西汉建立和“文景之治”【课件】3
- 丝绸之路上的民族学习通超星期末考试答案章节答案2024年
- 意识形态工作管理制度
- 化工和危险化学品企业评估分级指南(小微型型企业版)
- 骨密度课件完整版本
- 第一单元第1节感受万物互联的场景-第1课时 教学设计 2024-2025学年沪科版(2024)信息科技八年级上册
- 2024年公开招聘工作人员报名表
- 种子植物(课件) 2024-2025学年七年级生物上学期同步课件(2024人教版)
- 主题一 第2课 我是尊老敬老好少年(教学设计)教科版六年级下册综合实践活动
- 屋顶分布式光伏电站施工管理要点
评论
0/150
提交评论