版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MathematicalModeling数学建模(英文版)机械工业出版社,北京,2003.5经典原版书库,原书名:AFirstCourseinMathematicalModeling(ThirdEdition)byFrankR.Giordano,MauriceD.Weir,WilliamP.Fox1Chapter1ModelingChangeIntroduction Weoftendescribeaparticularphenomenonmathematically(bymeansofafunctionoranequation,forinstance). Suchamathematicalmodelisanidealizationofthereal-worldphenomenonandneveracompletelyaccuraterepresentation.2MathematicalModels Weareofteninterestedinpredictingthevalueofavariableatsometimeinthefuture.Amathematicalmodelcanhelpusunderstandabehaviorbetteroraidusinplanningforthefuture.
Let'sthinkofamathematicalmodelasamathematicalconstructdesignedtostudyaparticularreal-worldsystemorbehaviorofinterest.3 Themodelallowsustoreachmathematicalconclusionsaboutthe behavior,asillustratedinFigure1.1. Theseconclusionscanbeinterpretedtohelpadecisionmakerplanforthefuture. Inthischapterwedirectourattentiontomodelingchange.4Figure1.1Aflowofthemodelingprocessbeginningwithanexaminationofreal-worlddataReal-worlddataModelMathematicalconclusionsPredictions/explanationssimplificationAnalysisVerificationInterpretation5Simplification Mostmodelssimplifyreality.Generally,modelscanonlyapproximatereal-worldbehavior.Oneverypowerfulsimplifyingrelationshipisproportionality.6
DefinitionTwovariablesyandxareproportional(toeachother)ifoneisalwaysaconstantmultipleoftheother,thatis,ify=kxforsomenonzeroconstantk.Wewritey
x. Thedefinitionmeansthatthegraphofyversusxliesalongastraightlinethroughtheorigin.Thisgraphicalobservationisusefulintestingwhetheragivendatacollectionreasonablyassumesaproportionalityrelationship.7Example1
TestingforProportionality
Consideraspring-masssystem(Figure1.2).Weconductanexperimenttomeasurethestretchofthespringasafunctionofthemass(measuredasweight)placedonthespring.Considerthedatacollectedforthisexperiment,displayedinTable1.1.Figure1.2Spring-masssystem8Table1.1Spring-masssystemMass50100150200250Elongation1.0001.8752.7503.2504.3753003504004505005504.8755.6756.5007.2508.0008.7509
Ascatterplotgraphofthestretchorelongationofthespringversusthemassorweightplacedonitrevealsanapproximatestraightlinepassingthroughtheorigin.Figure1.3Datafromspring-masssystem10 Thedataappeartofollowtheproportionalityrulethatelongationeisproportionaltothemassm,orsymbolically,e
m. Wecalculatetheslopeofthelinejoiningthesepointsas Andthemodelisestimatedase=0.0163m.11 Byplottingthelinethemodelrepresentssuperimposedonthescatterplot(Figure1.4),thegraphrevealsthatthesimplifyingproportionalitymodelisreasonable.Figure1.4Datafromspring-masssystem12ModelingChange Apowerfulparadigmtouseinmodelingchangeis
futurevalue=presentvalue+change. Often,wewishtopredictthefutureonwhatweknownowandthechangethathasbeencarefullyobserved.Insuchcases,webeginbystudyingthechangeitselfaccordingtotheformula
change=futurevalue
presentvalue.13 Ifthebehaviorofinterestistakingplaceoverdiscretetimeperiods,theprecedingconstructleadstoadifferenceequation. Otherwise,ifthebehavioristakingplacecontinuouslywithrespecttotime,thentheconstructleadstoadifferentialequation.141.1ModelingChangewithDifferenceEquations
DefinitionForasequenceofnumbersA={a0,a1,a2,…},thenthfirstdifferencesare
an=an+1
an,n=0,1,2,…
NotefromFigure1.5thatthedifferencerepresentstheriseorfallbetweenconsecutivevaluesofthesequence.15Figure1.5Thefirstdifferenceofasequenceistheriseinthegraphduringonetimeperiod16Example1ASavingsCertificate Considerthevalueofasavingscertificateinitiallyworth$1000thataccumulatesinterestpaideachmonthat1%permonth.Thefollowingsequenceofnumbersrepresentsthevalueofthecertificatemonthbymonth:A={1000,1010,1020.10,1030.30,…}.17 ThefirstdifferenceofAareasfollows: Thisexpressioncanberewrittenasthedifferenceequation:whichgivesthedynamicalsystemmodel:18 Equation(1.1)representsaninfinitesetofalgebraicequations,calledadynamicalsystem. Dynamicalsystemsallowustodescribethechangefromoneperiodtothenext. Thedifferenceequationformulacomputesthenexttermknowingtheimmediatelypreviousterminthesequence,butitdoesnotcomputethevalueofaspecifictermdirectly(e.g.,thesavingsafter100periods).19 Tomodifyourexample,ifweweretowithdraw$50fromtheaccounteachmonth,thechangeduringaperiodwouldbetheinterestearnedduringthatperiodminusthemonthlywithdrawal,or20 Inmostexamples,mathematicallydescribingthechangeisnotgoingtobeaspreciseaprocedureasillustratedhere.Oftenitisnecessarytoplotthechange,observeapattern,andthendescribethechangeinmathematicalterms.Thatis,wewillbetryingtofindchange=
an=somefunctionf.21 Thechangemaybeafunctionofprevioustermsinthesequence,oritmayalsoinvolvesomeexternalterms.Thus,wewillbemodelingchangeindiscreteintervalsthisway:
change=
an=an+1
an
=f(termsinthesequence,externalterms). Modelingchangeinthiswaybecomestheartofdeterminingorapproximatingafunctionfthatrepresentsthechange.22Example2MortgagingaHome Sixyearsagoyourparentspurchasedahomebyfinancing$80000for20years,payingmonthlypaymentsof$880.87withamonthlyinterestof1%. Theyhavemade72paymentsandwishtoknowhowmuchtheyoweonthemortgage,whichtheyareconsideringpayingoffwithaninheritancetheyreceived.23 Thechangeintheamountowedeachperiodincreasesbytheamountofinterestanddecreasesbytheamountofthepayment: Solvingforbn+1andincorporatingtheinitialconditiongivesthedynamicalsystemmodel24Thus,yieldingthesequenceB={80000,79919.13,79837.45,…}. ThesequenceisgraphedinFigure1.6.ThefigureisplottedwithMatlab,b72=71532,b241=025Figure1.6ThesequenceandgraphforExample226 Inthissectionwehavediscussedbehaviorsintheworldthatcanbemodeledexactlybydifferenceequations.Inthenextsection,weusedifferenceequationtoapproximateobservedchange.Aftercollectingdataforthechangeanddiscerningpatternsofthebehavior,wewillusetheconceptofproportionalitytotestandfitmodelsthatwepropose.271.2ApproximatingChangewithDifferenceEquations
Inmostexamples,describingthechangemathematicallywillnotbeaspreciseaprocedureasinthesavingscertificateandmortgageexamplespresentedintheprevioussection.Typically,wemustplotthechange,observeapattern,andthenapproximatethechangeinmathematicalterms.28Example1GrowthofaYeastCulture Thedatainthetablebellowwascollectedfromanexperimentmeasuringthegrowthofayeastculture.TheGraph1.7representstheassumptionthatthechangeinpopulationisproportionaltothecurrentsizeofthepopulation.Thatis,
pn=pn+1
pn=kpn,wherepnrepresentsthesizeofthepopulationbiomassafternhours,andkisapositiveconstant.Thevalueofkdependsonthetimemeasurement.Inthisexamplek
0.5.29Timeinhoursn01234567Observedyeastbiomasspn9.618.329.047.271.1119.1174.6257.3Changeinbiomasspn+1
pn8.710.718.223.948.055.582.7
30Figure1.7Growthofayeastcultureversusbiomass31 Usingtheestimatek=0.5fortheslopeoftheline,wehypothesizetheproportionalitymodel
pn=pn+1
pn=0.5pn,yieldingthepredictionpn+1=1.5pn. Thismodelpredictsapopulationthatincreasesforever,whichisquestionable.32
ModelRefinement:ModelingBirths,Deaths,andResources Ifbothbirthsanddeathsduringaperiodareproportionaltothepopulation,thenthechangeinpopulationshouldbeproportionaltothepopulation,aswasillustratedinExample1.However,certainresources(e.g.,food)cansupportonlyamaximumpopulationlevelratherthanonethatincreasesindefinitely.Asthesemaximumlevelsareapproached,growthshouldslow.33Example2GrowthofaYeastCultureRevisited FindingaModelThedatainFigure1.8showwhatactuallyhappenstotheyeastculturegrowinginarestrictedareaastimeincreasesbeyondtheeightobservationsgiveninFigure1.734Timeinhoursn01234567Observedyeastbiomasspn9.618.329.047.271.1119.1174.6257.3Changeinbiomasspn+1
pn8.710.718.223.948.055.582.793.489101112131415161718350.7441.0513.3559.7594.8629.4640.8651.1655.9659.6661.190.372.346.435.134.611.410.34.83.72.2
35Figure1.8Yeastbiomassapproachesalimitingpopulationlevel36 Fromthethirdrowofthedatatablenotethatthechangeinpopulationperhourbecomessmallerastheresourcesbecomemorelimitedorconstrained.Fromthegraphofpopulationversustime,thepopulationappearstobeapproachingalimitingvalueorcarryingcapacity.Basedonourgraphweestimatethecarryingcapacitytobe665.37 Because665
pngetssmalleraspnapproaches665,weproposethemodel
pn=pn+1
pn=k(665
pn)pn,whichcausesthechange
ptobecomeincreasinglysmallaspnapproaches665. Mathematically,thishypothesizedmodelstatesthatthechange
pisproportionaltotheproduct(665
pn)pn. Totestthemodel,plot(pn+1
pn)versus(665
pn)pntoseeifthereisareasonableproportionality.Thenestimatetheproportionalityconstantk.38pn+1
pn8.710.718.223.948.055.5pn(665
pn)6291.8411834.6118444.0029160.1642226.2965016.6911.410.34.83.72.222406.6415507.369050.295968.693561.8434.641754.9682.793.490.372.346.435.185623.84104901.21110225.0198784.0077867.6158936.41Dataofpn+1
pnversus(665
pn)pn39Figure1.9Testingtheconstrainedgrowthmodel40 ExaminingFigure1.9,weseethattheplotdoesreasonablyapproximateastraightlineprojectedthroughtheorigin.Weestimatetheslopeofthelineapproximatingthedatatobeaboutk
0.00082,whichgivesthemodelpn+1
pn=0.00082(665
pn)pn.(1.2)SolvingtheModelNumerically
SolvingEquation(1.2)forpn+1givespn+1=pn+0.00082(665
pn)pn,(1.3)whichgivesadynamicalsystemmodelwiththeinitialvaluep0=9.6.41 ThisnumericalsolutionofmodelpredictionsispresentedinFigure1.10.Thepredictionsandobservationsareplottedtogetherversustimeonthesamegraph.Notethatthemodelcapturesfairlywellthetrendoftheobserveddata.42Figure1.10Modelpredictionsandobservations43Example3SpreadofaContagiousDisease Supposethereare400studentsinacollegedormitoryandthatoneormorestudentshaveaseverecaseoftheflu.Letinrepresentthenumberofinfectedstudentsafterntimeperiods. Assumesomeinteractionbetweenthoseinfectedandthosenotinfectedisrequiredtopassonthedisease.44 Ifallaresusceptibletothedisease,then400
inrepresentsthosesusceptiblebutnotyetinfected.Ifthoseinfectedremaincontagious,wecanmodelthechangeofthoseinfectedasaproportionalitytotheproductofthoseinfectedbythosesusceptiblebutnotyetinfected,or
in=in+1
in=kin(400
in).(1.4)45 Inthismodeltheproductin(400
in)representsthenumberofpossibleinteractionsbetweenthoseinfectedandthosenotinfectedattimen. Afractionkoftheseinteractionswouldcauseadditionalinfections,representedby
in.46 Equation(1.4)hasthesameformasEquation(1.2),butintheabsenceofanydatawecannotdetermineavaluefortheproportionalityconstantk.Nevertheless,agraphofthepredictionsdeterminedbyEquation(1.4)wouldhavethesameSshapeastheyeastpopulationinFigure1.10.47Example4
DecayofDigoxinintheBloodstream Digoxinisusedinthetreatmentofheartdisease.Doctormustprescribeanamountofmedicinethatkeepstheconcentrationofdigoxininthebloodstreamaboveaneffectivelevelwithoutexceedingasafelevel(thereisvariationamongpatients).48 Foraninitialdosageof0.5mginthebloodstream,tablebelowshowstheamountof
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024简单家具维修合同范本
- 2024年加工承揽合同标的与质量标准
- 2024建筑材料采购合同范本下载
- 2024年度公园绿化树苗采购合同
- 2024年山东潍坊物业委托管理合同
- 迷雾解说课件教学课件
- 2024年度互联网金融产品研发与推广合同
- 04版智能家居系统研发与销售合同
- 2024年度云服务提供商合同
- 2024年店铺投资合作协议
- 建筑机电系统全过程调试技术及工艺
- 六西格玛之控制阶段详解
- 《领导梯队:全面打造领导力驱动型公司》解读
- 护理质量安全与风险管理的案例分析
- 工程流体力学课后习题答案-(杜广生)
- AI智能客服应用实践
- 《止吐药临床应用》课件
- 幕墙工程检验批质量验收记录
- 危险化学品经营企业安全生产奖惩制度范本
- 报价单模板完
- 30题药品质量检测岗位常见面试问题含HR问题考察点及参考回答
评论
0/150
提交评论