数学建模课件_第1页
数学建模课件_第2页
数学建模课件_第3页
数学建模课件_第4页
数学建模课件_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MathematicalModeling数学建模(英文版)机械工业出版社,北京,2003.5经典原版书库,原书名:AFirstCourseinMathematicalModeling(ThirdEdition)byFrankR.Giordano,MauriceD.Weir,WilliamP.Fox1Chapter1ModelingChangeIntroduction Weoftendescribeaparticularphenomenonmathematically(bymeansofafunctionoranequation,forinstance). Suchamathematicalmodelisanidealizationofthereal-worldphenomenonandneveracompletelyaccuraterepresentation.2MathematicalModels Weareofteninterestedinpredictingthevalueofavariableatsometimeinthefuture.Amathematicalmodelcanhelpusunderstandabehaviorbetteroraidusinplanningforthefuture.

Let'sthinkofamathematicalmodelasamathematicalconstructdesignedtostudyaparticularreal-worldsystemorbehaviorofinterest.3 Themodelallowsustoreachmathematicalconclusionsaboutthe behavior,asillustratedinFigure1.1. Theseconclusionscanbeinterpretedtohelpadecisionmakerplanforthefuture. Inthischapterwedirectourattentiontomodelingchange.4Figure1.1Aflowofthemodelingprocessbeginningwithanexaminationofreal-worlddataReal-worlddataModelMathematicalconclusionsPredictions/explanationssimplificationAnalysisVerificationInterpretation5Simplification Mostmodelssimplifyreality.Generally,modelscanonlyapproximatereal-worldbehavior.Oneverypowerfulsimplifyingrelationshipisproportionality.6

DefinitionTwovariablesyandxareproportional(toeachother)ifoneisalwaysaconstantmultipleoftheother,thatis,ify=kxforsomenonzeroconstantk.Wewritey

x. Thedefinitionmeansthatthegraphofyversusxliesalongastraightlinethroughtheorigin.Thisgraphicalobservationisusefulintestingwhetheragivendatacollectionreasonablyassumesaproportionalityrelationship.7Example1

TestingforProportionality

Consideraspring-masssystem(Figure1.2).Weconductanexperimenttomeasurethestretchofthespringasafunctionofthemass(measuredasweight)placedonthespring.Considerthedatacollectedforthisexperiment,displayedinTable1.1.Figure1.2Spring-masssystem8Table1.1Spring-masssystemMass50100150200250Elongation1.0001.8752.7503.2504.3753003504004505005504.8755.6756.5007.2508.0008.7509

Ascatterplotgraphofthestretchorelongationofthespringversusthemassorweightplacedonitrevealsanapproximatestraightlinepassingthroughtheorigin.Figure1.3Datafromspring-masssystem10 Thedataappeartofollowtheproportionalityrulethatelongationeisproportionaltothemassm,orsymbolically,e

m. Wecalculatetheslopeofthelinejoiningthesepointsas Andthemodelisestimatedase=0.0163m.11 Byplottingthelinethemodelrepresentssuperimposedonthescatterplot(Figure1.4),thegraphrevealsthatthesimplifyingproportionalitymodelisreasonable.Figure1.4Datafromspring-masssystem12ModelingChange Apowerfulparadigmtouseinmodelingchangeis

futurevalue=presentvalue+change. Often,wewishtopredictthefutureonwhatweknownowandthechangethathasbeencarefullyobserved.Insuchcases,webeginbystudyingthechangeitselfaccordingtotheformula

change=futurevalue

presentvalue.13 Ifthebehaviorofinterestistakingplaceoverdiscretetimeperiods,theprecedingconstructleadstoadifferenceequation. Otherwise,ifthebehavioristakingplacecontinuouslywithrespecttotime,thentheconstructleadstoadifferentialequation.141.1ModelingChangewithDifferenceEquations

DefinitionForasequenceofnumbersA={a0,a1,a2,…},thenthfirstdifferencesare

an=an+1

an,n=0,1,2,…

NotefromFigure1.5thatthedifferencerepresentstheriseorfallbetweenconsecutivevaluesofthesequence.15Figure1.5Thefirstdifferenceofasequenceistheriseinthegraphduringonetimeperiod16Example1ASavingsCertificate Considerthevalueofasavingscertificateinitiallyworth$1000thataccumulatesinterestpaideachmonthat1%permonth.Thefollowingsequenceofnumbersrepresentsthevalueofthecertificatemonthbymonth:A={1000,1010,1020.10,1030.30,…}.17 ThefirstdifferenceofAareasfollows: Thisexpressioncanberewrittenasthedifferenceequation:whichgivesthedynamicalsystemmodel:18 Equation(1.1)representsaninfinitesetofalgebraicequations,calledadynamicalsystem. Dynamicalsystemsallowustodescribethechangefromoneperiodtothenext. Thedifferenceequationformulacomputesthenexttermknowingtheimmediatelypreviousterminthesequence,butitdoesnotcomputethevalueofaspecifictermdirectly(e.g.,thesavingsafter100periods).19 Tomodifyourexample,ifweweretowithdraw$50fromtheaccounteachmonth,thechangeduringaperiodwouldbetheinterestearnedduringthatperiodminusthemonthlywithdrawal,or20 Inmostexamples,mathematicallydescribingthechangeisnotgoingtobeaspreciseaprocedureasillustratedhere.Oftenitisnecessarytoplotthechange,observeapattern,andthendescribethechangeinmathematicalterms.Thatis,wewillbetryingtofindchange=

an=somefunctionf.21 Thechangemaybeafunctionofprevioustermsinthesequence,oritmayalsoinvolvesomeexternalterms.Thus,wewillbemodelingchangeindiscreteintervalsthisway:

change=

an=an+1

an

=f(termsinthesequence,externalterms). Modelingchangeinthiswaybecomestheartofdeterminingorapproximatingafunctionfthatrepresentsthechange.22Example2MortgagingaHome Sixyearsagoyourparentspurchasedahomebyfinancing$80000for20years,payingmonthlypaymentsof$880.87withamonthlyinterestof1%. Theyhavemade72paymentsandwishtoknowhowmuchtheyoweonthemortgage,whichtheyareconsideringpayingoffwithaninheritancetheyreceived.23 Thechangeintheamountowedeachperiodincreasesbytheamountofinterestanddecreasesbytheamountofthepayment: Solvingforbn+1andincorporatingtheinitialconditiongivesthedynamicalsystemmodel24Thus,yieldingthesequenceB={80000,79919.13,79837.45,…}. ThesequenceisgraphedinFigure1.6.ThefigureisplottedwithMatlab,b72=71532,b241=025Figure1.6ThesequenceandgraphforExample226 Inthissectionwehavediscussedbehaviorsintheworldthatcanbemodeledexactlybydifferenceequations.Inthenextsection,weusedifferenceequationtoapproximateobservedchange.Aftercollectingdataforthechangeanddiscerningpatternsofthebehavior,wewillusetheconceptofproportionalitytotestandfitmodelsthatwepropose.271.2ApproximatingChangewithDifferenceEquations

Inmostexamples,describingthechangemathematicallywillnotbeaspreciseaprocedureasinthesavingscertificateandmortgageexamplespresentedintheprevioussection.Typically,wemustplotthechange,observeapattern,andthenapproximatethechangeinmathematicalterms.28Example1GrowthofaYeastCulture Thedatainthetablebellowwascollectedfromanexperimentmeasuringthegrowthofayeastculture.TheGraph1.7representstheassumptionthatthechangeinpopulationisproportionaltothecurrentsizeofthepopulation.Thatis,

pn=pn+1

pn=kpn,wherepnrepresentsthesizeofthepopulationbiomassafternhours,andkisapositiveconstant.Thevalueofkdependsonthetimemeasurement.Inthisexamplek

0.5.29Timeinhoursn01234567Observedyeastbiomasspn9.618.329.047.271.1119.1174.6257.3Changeinbiomasspn+1

pn8.710.718.223.948.055.582.7

30Figure1.7Growthofayeastcultureversusbiomass31 Usingtheestimatek=0.5fortheslopeoftheline,wehypothesizetheproportionalitymodel

pn=pn+1

pn=0.5pn,yieldingthepredictionpn+1=1.5pn. Thismodelpredictsapopulationthatincreasesforever,whichisquestionable.32

ModelRefinement:ModelingBirths,Deaths,andResources Ifbothbirthsanddeathsduringaperiodareproportionaltothepopulation,thenthechangeinpopulationshouldbeproportionaltothepopulation,aswasillustratedinExample1.However,certainresources(e.g.,food)cansupportonlyamaximumpopulationlevelratherthanonethatincreasesindefinitely.Asthesemaximumlevelsareapproached,growthshouldslow.33Example2GrowthofaYeastCultureRevisited FindingaModelThedatainFigure1.8showwhatactuallyhappenstotheyeastculturegrowinginarestrictedareaastimeincreasesbeyondtheeightobservationsgiveninFigure1.734Timeinhoursn01234567Observedyeastbiomasspn9.618.329.047.271.1119.1174.6257.3Changeinbiomasspn+1

pn8.710.718.223.948.055.582.793.489101112131415161718350.7441.0513.3559.7594.8629.4640.8651.1655.9659.6661.190.372.346.435.134.611.410.34.83.72.2

35Figure1.8Yeastbiomassapproachesalimitingpopulationlevel36 Fromthethirdrowofthedatatablenotethatthechangeinpopulationperhourbecomessmallerastheresourcesbecomemorelimitedorconstrained.Fromthegraphofpopulationversustime,thepopulationappearstobeapproachingalimitingvalueorcarryingcapacity.Basedonourgraphweestimatethecarryingcapacitytobe665.37 Because665

pngetssmalleraspnapproaches665,weproposethemodel

pn=pn+1

pn=k(665

pn)pn,whichcausesthechange

ptobecomeincreasinglysmallaspnapproaches665. Mathematically,thishypothesizedmodelstatesthatthechange

pisproportionaltotheproduct(665

pn)pn. Totestthemodel,plot(pn+1

pn)versus(665

pn)pntoseeifthereisareasonableproportionality.Thenestimatetheproportionalityconstantk.38pn+1

pn8.710.718.223.948.055.5pn(665

pn)6291.8411834.6118444.0029160.1642226.2965016.6911.410.34.83.72.222406.6415507.369050.295968.693561.8434.641754.9682.793.490.372.346.435.185623.84104901.21110225.0198784.0077867.6158936.41Dataofpn+1

pnversus(665

pn)pn39Figure1.9Testingtheconstrainedgrowthmodel40 ExaminingFigure1.9,weseethattheplotdoesreasonablyapproximateastraightlineprojectedthroughtheorigin.Weestimatetheslopeofthelineapproximatingthedatatobeaboutk

0.00082,whichgivesthemodelpn+1

pn=0.00082(665

pn)pn.(1.2)SolvingtheModelNumerically

SolvingEquation(1.2)forpn+1givespn+1=pn+0.00082(665

pn)pn,(1.3)whichgivesadynamicalsystemmodelwiththeinitialvaluep0=9.6.41 ThisnumericalsolutionofmodelpredictionsispresentedinFigure1.10.Thepredictionsandobservationsareplottedtogetherversustimeonthesamegraph.Notethatthemodelcapturesfairlywellthetrendoftheobserveddata.42Figure1.10Modelpredictionsandobservations43Example3SpreadofaContagiousDisease Supposethereare400studentsinacollegedormitoryandthatoneormorestudentshaveaseverecaseoftheflu.Letinrepresentthenumberofinfectedstudentsafterntimeperiods. Assumesomeinteractionbetweenthoseinfectedandthosenotinfectedisrequiredtopassonthedisease.44 Ifallaresusceptibletothedisease,then400

inrepresentsthosesusceptiblebutnotyetinfected.Ifthoseinfectedremaincontagious,wecanmodelthechangeofthoseinfectedasaproportionalitytotheproductofthoseinfectedbythosesusceptiblebutnotyetinfected,or

in=in+1

in=kin(400

in).(1.4)45 Inthismodeltheproductin(400

in)representsthenumberofpossibleinteractionsbetweenthoseinfectedandthosenotinfectedattimen. Afractionkoftheseinteractionswouldcauseadditionalinfections,representedby

in.46 Equation(1.4)hasthesameformasEquation(1.2),butintheabsenceofanydatawecannotdetermineavaluefortheproportionalityconstantk.Nevertheless,agraphofthepredictionsdeterminedbyEquation(1.4)wouldhavethesameSshapeastheyeastpopulationinFigure1.10.47Example4

DecayofDigoxinintheBloodstream Digoxinisusedinthetreatmentofheartdisease.Doctormustprescribeanamountofmedicinethatkeepstheconcentrationofdigoxininthebloodstreamaboveaneffectivelevelwithoutexceedingasafelevel(thereisvariationamongpatients).48 Foraninitialdosageof0.5mginthebloodstream,tablebelowshowstheamountof

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论