新人教版高中必修2课件-221直线与平面平行的判定_第1页
新人教版高中必修2课件-221直线与平面平行的判定_第2页
新人教版高中必修2课件-221直线与平面平行的判定_第3页
新人教版高中必修2课件-221直线与平面平行的判定_第4页
新人教版高中必修2课件-221直线与平面平行的判定_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.1直线与平面平行的判定普通高中课程标准实验教科书

数学②

(必修)2.2.1直线与平面平行的判定(1)直线在平面内-----有无数个公共点如图:(2)直线在平面外:①直线a和面α相交:如图:

②直线a和面α平行:

a∥α如图:.Aaaaaaa复习:直线与平面的位置关系有公共点无公共点动手做做看将课本的一边AB紧靠桌面,并绕AB转动,观察AB的对边CD在各个位置时,是不是都与桌面所在的平面平行?从中你能得出什么结论?ABCDCD是桌面外一条直线,AB是桌面内一条直线,CD∥AB,则CD∥桌面直线AB、CD各有什么特点呢?有什么关系呢?猜想:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。探究问题,归纳结论如图,平面外的直线

平行于平面内的直线b。(1)这两条直线共面吗?(2)直线与平面相交吗?b直线和平面平行的判定定理定理:平面外的一条直线和平面内的一条直线平行,则该直线和这个平面平行。

bab

a∥ba

a∥

注明:1、定理三个条件缺一不可。2、简记:线线平行,则线面平行。3、定理告诉我们:要证线面平行,得在面内找一条线,使线线平行。感受校园生活中线面平行的例子:天花板平面感受校园生活中线面平行的例子:球场地面定理的应用例1.如图,空间四边形ABCD中,E、F分别是AB,AD的中点.求证:EF∥平面BCD.ABCDEF分析:要证明线面平行只需证明线线平行,即在平面BCD内找一条直线平行于EF,由已知的条件怎样找这条直线?证明:连结BD.∵AE=EB,AF=FD∴EF∥BD(三角形中位线性质)例1.如图,空间四边形ABCD中,E、F分别是AB,AD的中点.求证:EF∥平面BCD.ABDEF定理的应用解后反思:通过本题的解答,你可以总结出什么解题思想和方法?反思1:要证明直线与平面平行可以运用判定定理;线线平行线面平行反思2:能够运用定理的条件是要满足六个字,“面外、面内、平行”。反思3:运用定理的关键是找平行线。找平行线又经常会用到三角形中位线定理。1.如图,在空间四边形ABCD中,E、F分别为AB、AD上的点,若,则EF与平面BCD的位置关系是_____________.

EF//平面BCD变式1:ABCDEF变式2:ABCDFOE2.如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB//平面DCF.(04年天津高考)分析:连结OF,可知OF为△ABE的中位线,所以得到AB//OF.∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB//OF,BDFO2.如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB//平面DCF.证明:连结OF,ACE变式2:D1C1B1A1DCBA如图,长方体ABCD-A1B1C1D1中,与AA1平行的平面是___________________.巩固练习:平面BC1、平面CD1例2.如图,四面体ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点.BCADEFGH(3)你能说出图中满足线面平行位置关系的所有情况吗?(1)E、F、G、H四点是否共面?(2)试判断AC与平面EFGH的位置关系;BCADEFGH解:(1)E、F、G、H四点共面。∵在△ABD中,E、H分别是AB、AD的中点.∴EH∥BD且同理GF∥BD且EH∥GF且EH=GF∴E、F、G、H四点共面。(2)AC∥平面EFGHBCADEFGH(3)由EF∥HG∥AC,得EF∥平面ACDAC∥平面EFGHHG∥平面ABC由BD∥EH∥FG,得BD∥平面EFGHEH∥平面BCDFG∥平面ABD1.线面平行,通常可以转化为线线平行来处理.反思~领悟:2.寻找平行直线可以通过三角形的中位线、梯形的中位线、平行线的判定等来完成。3、证明的书写三个条件“内”、“外”、“平行”,缺一不可。例3、两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证:MN∥平面BCE。PQG分析:只要在平面BEC内找到一条直线与MN平行思路1:思路2:证法一:作MP∥AB交BC于P,NQ∥AB交BE于Q

又由题可知,AM=FN,AC=BF,AB=EF即四边形MNQP为平行四边形平面BCE,平面BCE,平面BCE。PQG证法二:连接AN并延长交BE的延长线于点G,连CG,平面BCE,平面BCE,平面BCE。如图,在正方体ABCD——A1B1C1D1中,E、F分别是棱BC与C1D1的中点。求证:EF//平面BDD1B1.MNM如图,已知在三棱柱ABC——A1B1C1中,D是AC的中点。求证:AB1//平面DBC1P2.应用判定定理判定线面平行时应注意六个字:(1)面外,(2)面内,(3)平行。小结:1.直线与平面平行的判定:(1)运用定义;(2)运用判定定理:线线平行线面平行3.应用判定定理判定线面平行的关键是找平行线方法一:三角形的中位线定理;方法二:平行四边形的平行关系。思考:设直线a,b为异面直线,经过直线a可作几个平面与直线b平行?过a,b外一点P可作几个平面与直线a,b都平行?baababpp已知:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论