版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
HoneywellLaboratoriesGoalsandThreats:MotivationsinCIRCADavidJ.MuslinerHoneywellLaboratories(612)951-7599Stillworkingonmy(Michigan)thesistopic.13yearssincefirstCIRCApaper.PresentationOutlineCIRCAoverview:Motivatingdomains.Architecturalmodules.Representations,includingmotivationmechanisms.Automaticallyplanningreal-timereactiveplans.ProbabilisticCIRCA:Motivatingdomains.Representationchanges.Motivationchanges.Planningmethodschanges.LearninginCIRCAMotivatingDomainCharacteristicsTime-critical,hazardous,open-worlddomains:CIRCAguaranteesthatitwillrespondinatimelywaytothreatsinitsenvironment,avoidingfailuresandpursuinggoals.Requiresrobustnessbeyondhumanperformance.Boundedreactivity:CIRCAreasonsexplicitlyaboutthetimeneededforsensingandactions(“perceptual-motorlimits〞).Boundedrationality:CIRCAdynamicallybuildsreactiveplansforonlytheimmediatelyrelevantpartsofthesituation.CIRCAisself-aware,usingmeta-leveldeliberationschedulingtooptimizeitsonlineplanningprocess.Multi-AgentSelf-AdaptiveCIRCAApproach:Automaticsynthesisandadaptationofguaranteedreal-timecontrollers.Performance:Reactivecontrolresponsestothreatsandcontingenciesinmilliseconds.Coordinatedmulti-agentbehaviorsintensofmilliseconds.Dynamicreconfigurationofteammissionplaninlessthan10seconds.DemonstrationsinsimulatedUAVteamdomains:coordinateddefense,dynamicreplanningforcontingencies.Impact:RobustUAVsthatrebuildtheirowncontrolsystemsinresponsetocontingencies(e.g.,damage,targetofopportunity).SmartUAVteamsthatactivelycoordinatedistributedcapabilities/resourcestomaximizemissioneffectiveness.Sponsor:DARPAANTS.Teammate:Univ.ofMichiganGoal:Adaptivereal-timecoordinationandcontrolofmulti-UAVteams.IntelligentReal-TimeCyberSecurityApproach:UseCIRCAtoplanandexecutereactivesecuritycontrollers.Tailorresponsesautomaticallyaccordingtoavailableresources,varyingthreatlevels&securitypolicies.
Performance:Fullyautonomousoperationsdefeatingattacksinmicroseconds.Rapidreconfigurationfordynamicnetworkassets,securitystate,threatprofile.Demonstrationsinrealcomputernetworks.Impact:Real-timeresponsesdefeatmanualandautomatedattackscripts.Automatictradeoffsofsecurityvs.servicelevelandaccessibility.Systemderivesresponsesfornovelattacksbuiltfromknowncomponents.Sponsor:DARPACyberPanel.Teammate:SecureComputingGoal:Automaticreal-timeresponsetocomputersecurityintrusions.ComputingservicesActiveSecurityControllerExecutiveControllerSynthesisModuleCIRCADIANetworks,ComputersAttacks,intrusionsIntrusionAssessmentSecurityTradeoffPlannerCIRCAArchitectureAdaptiveMissionPlanner:Dividesanoverallmissionintomultiplephases,withlimitedperformancegoalsdesignedtomaketheplanningproblemsolvablewithavailabletimeandavailableexecutionresources.Deliberationscheduling.ControllerSynthesisModule:Foreachmissionphase,plansasetofreal-timereactionsaccordingtotheconstraintssentfromAMP.Planning.RealTimeSubsystem:Continuouslyexecutesplannedcontrolreactionsinhardreal-timeenvironment;doesnot“pause〞waitingfornewplans.Execution.AdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemGeneratecontrollerHowCIRCAWorksAdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemBreakdownmissionGeneratecontrollerExecutecontrollerif(state-1)thenaction-1if(state-2)thenaction-2...GeneratecontrollerStartGoalExtendingPerformanceGuaranteestoMulti-AgentTeamsAdaptiveMissionPlanner:Negotiatesrolesandresponsibilitiesbetweenagentsincollaborativeteam.ControllerSynthesisModule:Buildscontrollersthatincludecoordinatedactionsbymultipleagents.RealTimeSubsystem:Executescoordinatedcontrollerspredictably,includingdistributedsensingandacting.Onlysystemtoguaranteetimingofend-to-endmulti-agentcoordinatedbehaviorsAdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemRoles,GoalsReal-TimeReactionsPlannedActions,PlannedNegotiationsAdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemRealTimeSubsystem(RTS)TheRTSexecutesloopsofTest-ActionPairs(TAPs).TheRTSexecutesinparallelwiththeotherCIRCAmodules.Parallelexecutionpermitsre-planningusingcomputationally-expensivealgorithmswhilepreservingplatformsafety.Special-purposeTAPsusedtodownloadandswitchtonextcontroller.RTSincludesmultipleTAPschedulecachestoholdcontrollersbeforetheyareactivated.ExampleTAP:If(radar-missile-trackingT)thenbegin-evasiveswithmax-delay:300msec.action1action2action1action3action1test1test2test1test3test1test4action4Availableactions“Non-volitional〞transitionsGoalstatedescriptionInitialstatedescriptionTimedAutomataWorldModel&ExecutableReactiveControllerPlanningReal-TimeReactionsTransition-basedinputmodelsimilartoclassicalplanners,butwithtemporalcharacteristicsandnon-volitionaltransitions.TAPCompilerSchedulerStateSpacePlannerVerifierCSMCSMFunctionalComponentsStateSpacePlannerpredictsfuturethreatsandopportunities,plansactionswithtimingconstraintsforfuturestates.Verifierreasonsaboutcomplextemporalmodeltoensurethatallfailuresarepreempted.TAPcompilerreducestimedautomatacontrollermodeltotime-constrainedreactions(Test-ActionPairs).SchedulerbuildsexecutablecycleofTAPstomeettimeconstraints.ControllerSynthesisModuleTAPCompilerSchedulerStateSpacePlannerVerifierCSMAlgorithmCSMessentiallydeterminesastrategyinatimedgameagainstaworst-caseadversary.
Searchloopiterativelyselectsastateandchoosesactionforthatstate.Heuristicsguidechoiceforsafetyandgoalachievement.Approximationsindicatethattimingwillwork.Formalreachabilityanalysiscalledaftereachactionchoice,toconfirmthatallplannedpreemptionswilloccur.Iffailurereachable,pathtofailurecanbeusedtobackjumptomostrecentdecisionrelatedtoanystateonthepath.CIRCAMotivations:ThreatsThreatsrepresentedbytemporaltransitionstofailure(TTFs).CSMonlyreturnsplansthatmakefailureunreachable,using:Prevention:plannedactionsneverallowTTFpreconditionstobecometrue.Preemption:plannedactionswilldefinitelyhappenbeforeTTFs.OKThreatenedFailureSafeRadarThreatDomain-1;;Radar-guidedmissilethreatscanoccuratanytime.(make-instance'event:name"radar_threat":preconds'((radar_missile_trackingF)):postconds'((radar_missile_trackingT)));;Youdieifdon'tdefeatathreatby1200timeunits.(make-instance'temporal:name"radar_threat_kills_you":preconds'((radar_missile_trackingT)):postconds'((failureT)):min-delay1200)RadarThreatDomain-2;;Ittakesnomorethan10timeunitstostartevasives.(make-instance'action:name"begin_evasive":preconds'((pathnormal)):postconds'((pathevasive)):max-delay10);;Wedefeatmissileinbetween250and400timeunits.(make-instance'reliable-temporal:name"evade_radar_missile":preconds'((radar_missile_trackingT)(pathevasive)):postconds'((radar_missile_trackingF)):delay(make-range250400))FAILURERadar-threat-kills-youRadar-missile-trackingTPathnormalRadarThreatKeyConcept:PreventFailurePreemptionasKeyPlanningStructureRadar-missile-trackingFPathnormalBegin-evasiveRadar-missile-trackingTPathevasivepreemptionFAILURERadar-threat-kills-youRadar-missile-trackingTPathnormalRadarThreatNon-MarkovTemporalModelRadar-missile-trackingFPathnormalBegin-evasiveRadar-missile-trackingTPathevasiveRadar-threat-kills-youEvade-radar-missileRadar-missile-trackingFPathevasiveWhynon-Markov?Efficientreactiveplanconstruction.CIRCAMotivations:GoalsRepresentedbydesignationofspecificdesirablefeature/valuepairs.CSMheuristicguidessystemtochooseactionsthattrytoachieve(andre-achieve)maximumnumberofgoalfeatures.Allgoalsare:Conjunctive.Optional.RadarThreatDomain-3;;Yourgoalistocontinueflyingnormalpath.(make-instance‘goal:condition'((pathnormal)))Optionalelementsfordifferentplanners::reward:priorityFAILURERadar-threat-kills-youRadar-missile-trackingTPathnormalRadarThreatGoalsDriveStabilizationRadar-missile-trackingFPathnormalBegin-evasiveRadar-missile-trackingTPathevasiveRadar-threat-kills-youEvade-radar-missileRadar-missile-trackingFPathevasiveRadar-missile-trackingFPathnormalEnd-evasiveDynamicAbstractionPlanningStartwithabstractstatesomittingallnon-goalfeatures.Incrementallyandnon-uniformlyaddfeaturestostateswhenrequired:Whennosafeactionsareapplicable.Whengoalachievementheuristicindicates.Result:plannerdecideswhatitneedstothinkabout,when.Futuredirection:usethistoguidewhatyouattendtoforlearning.non-failurefailureRadar-threat-kills-younon-failurePathnormalPathevasivefailureRadar-threat-kills-youAMPResponsibilitiesDividemissionintophases,subdividingthemasnecessarytohandleresourcerestrictions.NegotiatewithotherAMPstoallocategoalsandthreatsineachphase.Buildproblemconfigurationsforeachphase,todriveCSM.Modifyproblemconfigurations,bothinternallyandvianegotiationwithotherAMPs,tohandleresourcelimitations.Tasksrepresent:Contractstohandlethreatsandgoals.Needtoannounce,bid,award,andplanforthem.Needtogenerateplanforaproblemconfiguration.NeedtodownloadplanforaconfigurationtotheRTS.OneachAMPdecisioncycle,selectandexecutehighest-prioritytask.Newcapability:deliberationscheduling.Estimatecosts/benefitsofdifferenttasks:tieprioritytoutility.NegotiatedAllocationofMissionGoalsAdaptiveMissionPlannersnegotiatetodistribute:Long-termmissiongoals.Roles:predefineresponsibilities/concernsascontextfornegotiation.Performanceevaluationresponsibilities.EnhancedContract-Netstylenegotiation.Adaptivity/dynamics.AMPDeliberationSchedulingMissionphasescharacterizedby:Probabilityofsurvival/failure.Expectedreward. Expectedstarttimeandduration.Agentkeepsrewardfromallexecutedphases.DifferentCSMproblemconfigurationoperatorsyielddifferenttypesofplanimprovements.Improveprobabilityofsurvival.Improveexpectedreward(numberorlikelihoodofgoals).Configurationoperatorscanbeappliedtosamephaseindifferentways(viaparameters).Configurationoperatorshavedifferentexpectedresourcerequirements(computationtime/space).ExtensibleCIRCAArchitectureWell-definedAPIforeachCIRCAmoduleandcomponentswithinmodules.Eg:CSM:problemspecification,algorithmcontrolsin,reactiveplansandplanningprocessmonitoringout.Well-definedAPIforcomponentswithinmodules.Eg:APIforstate-spaceplannerinteractionwithverifier:Statespacemodelintoverifier.Safetyassessmentplusoptionalculpritstatetraceoutfromverifier.Hasallowedustoplugindifferentplannersandverifiersfordifferentdomainrepresentationsandverifierapproaches:Timedautomata:Kronos,RTA,CSV,RTA-incremental,CSV-incremental;DAP,pDAP,regularplanners.Safety-orientedGeneralizedsemi-Markov:MonteCarlosampler.Maximizingexpectedutility:MCsampler;evolutionaryreaction-spacesearchengine.Differentexecutives:RTS,CLIPS.MemoryandModelsinCIRCAAdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemMissionmodel:phaseswiththreats&goals.Mappingsfromthreats/goalstopartialCSMinputmodels(setsoftransitions).CSMperformanceprofiles.TransitionmodelsfromAMP.TimingmodelofRTS.CachedTAPcontrollers.Currentlysensedstatefeatures.ProbabilisticReactivePlanningAddtransitionprobabilitiestostatemodel.Worldtransitionsandcontrolledactions.Samplesimulatedexecutionsofthecurrentplantoestimateprobabilityofreachingdifferentstates.Buildplansthathandlemost-probablestates.AllowsCIRCAtotradeoffplanningtimeandplancomplexityagainstsystemsafety.AllowsCIRCAtooptimizeexpectedutilityofplans,tradingoffsafetyagainstmissionobjectives(goals,rewardmodel).ProbabilisticWorldModelDynamicsTheworldmodelisageneralizedsemi-Markovprocess(GSMP).Theworldoccupiesasinglestateatanypointintime.Enabledtransitionsinthecurrentstatecompetetotrigger.Onetransitiontriggersineachstate,determiningthenextstate.Non-Markovianbecausetriggerdistributionsdependonholdingtimes.TherearenoanalyticsolutionsforunrestrictedGSMPs.Mustuseasampling-basedapproachtoestimatestateprobabilities.Simpler:estimatewhetherfailureistoolikely.AcceptanceSamplingLetpFbethefailureprobabilityofaplan.Wanttospecifyfailurethresholdqsuchthat:PlanisacceptedifpF
£
q.PlanisrejectedifpF
>
q.Useacceptancesamplingtodecidewhethertoacceptaplan.Exhaustivesamplingisimpossible,sowemustexpecterrors:TypeIerror:rejectacceptableplan.TypeIIerror:acceptrejectableplan.Wanttoboundprobabilityoferror.SequentialSamplingSinglesamplingplanalwaysrequiresfixednumberofsamples.Sequentialsamplingplandecideswhethertogeneratemoresamplesbasedonsamplesseensofar.Defineacceptancenumberanandrejectionnumberrnatstagen.AcceptplanifobservedfailuresareatmostanRejectplanifobservedfailuresareatleastrnIntuitivesequentialsampling:Ifyou’vealreadyseencfailuresatanyiteration,thenreject(rn=c).Ifyoucannotpossiblyseecfailuresinremainingiterations,thenaccept(an=c+i-n-1).NumberofSamplesRequiredWaldacceptancesamplingrequiressignificantlyfewersamples.ActualfailureprobabilityStaticsamplingplanWaldsequentialsamplingplanthresholdPerformanceExpectednumberofrequiredsamplesonlydependsonfailureprobabilityandthreshold,notstatespacesize!Domain-dependentfactorsaffectingtimetogenerateeachsample:Timeperiodconsidered(tmax).MeanvaluesofthedistributionfunctionsF.Inpractice,thisallowsustogenerateprobabilistically-verifiedplansforverylargedomainsthatcannotbehandledbycomplete(non-probabilistic)model-checkingapproaches.OptimizingPlansinGSMPsAddingprobabilisticdelaydistributionstotimedautomatayieldsGeneralizedSemi-MarkovProcessmodel:Efficientforrepresentingrealworld.Noanalyticsolutionsavailable.Addingrewardmodelgivesopportunityfordecision-theoreticsolutioncriterion:maximizeexpectedutility.Approach:generateplansandassessEUdominanceusingMonteCarlosamplingofGSMPexecutions.Backjumpbasedonsampletraces.Newideas:localsearch;evolutionarysearchinreactionspace.LearninginCIRCA:NotAboutSpeedupUniquerequirementsonlearningformission-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年内蒙古自治区阿拉善盟公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2022年甘肃省张掖市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年湖南省衡阳市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2023年贵州省贵阳市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年广东省云浮市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 《夏季内科常见病》课件
- 《医药销售技巧培训》课件
- 2024版建筑工程防水合同模板
- 《角色游戏材料投放》课件
- 2024版室内装修材料供应及施工协议细则版B版
- 【航空个性化服务浅析4700字(论文)】
- 保障农民工工资支付条例全文及解读课件
- 中国移动全面预算管理
- 【部编】小高考:2021年江苏普通高中学业水平测试历史试卷
- 公路隧道建设施工技术规范学习考试题库(400道)
- 新人教版七至九年级英语单词表 汉译英(含音标)
- 浅谈事业单位固定资产的折旧本科学位论文
- 食堂管理制度大全
- 爱普生机器人中级培训资料
- 2023-2024学年浙江省富阳市小学数学六年级上册期末模考试卷
- 2020-2021学年江苏省徐州市九年级(上)期末化学试卷
评论
0/150
提交评论