版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12.4证明三角形全等的五种基本思路【人教版】考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,可加强学生对证明三角形全等的五种基本思路的理解!【类型1已知两边对应相等,寻找第三边相等,用“SSS”】1.(2023春·山东泰安·七年级统考期末)如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是(
)A.①或② B.②或③ C.①或③ D.①或④2.(2023春·陕西西安·七年级统考期末)如图,点E、F在BD上,且AB=CD,BF=DE、AE=CF,AC与BD交于点O.则下列说法不正确的是(
)
A.BE=DF B.△AEB≌△CFD C.∠EAB=∠OAE D.AE3.(2023春·广东江门·八年级校考期中)如图,已知:PA=PB,AC=BD,PC=PD,△PAD和△PBC全等吗?请说明理由.4.(2023春·山东泰安·七年级统考期末)如图,点D,A,E,B在同一直线上,EF=BC,DF=AC,DA=EB.试说明:∠F=∠C.5.(2023春·浙江杭州·八年级校考开学考试)如图,在△ABC中,点D,点E分别在边AB,边BC上,连接DE,AD=AC,ED=EC.(1)求证:∠ADE=∠C.(2)若AB⊥DE,∠B=30°,求∠A的度数.6.(2023春·山东泰安·七年级统考期末)如图,在△ABC中,AC=BC,D是AB上的一点,AE⊥CD于点E,BF⊥CD交CD的延长线于点F,若CE=BF,AE=EF+BF,试判断直线AC与BC的位置关系,并说明理由.【类型2已知两边对应相等,寻找夹角相等,用“SAS”】1.(2023春·贵州遵义·八年级统考阶段练习)如图,F,C是AD上两点,且AF=CD;点E,F,G在同一直线上,∠B=∠AGF,BC=EF求证:ΔABC≌ΔDEF.2.(2023春·山西朔州·八年级校考期末)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD⊥CE3.(2023·陕西西安·九年级西北工业大学附属中学校考期末)已知,如图,Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上一点,且不与A、B两点重合,AE⊥AB,AE=BD.连接DE、DC,求证:CE=CD.4.(2023春·七年级课时练习)如图,点E在AB上,DE∥BC,且DE=AB,EB=BC,连接EC并延长,交DB的延长线于点(1)求证:AC=DB;(2)若∠A=30°,∠BED=40°,求5.(2023春·上海·七年级专题练习)如图,已知△ABC和△CDE都是等边三角形,且B、C、E在一直线上,AC、BD交于F点,AE、CD交于G点,试说明FG∥BE的理由.6.(2023春·四川成都·八年级校考开学考试)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上载取CE=BD,连接AD、AE.(1)如图1,当点D落在线段BC的延长线上时,求证:△ABD≌△ACE;(2)在(1)的条件下,求出∠ADE的度数;(3)如图2,当点D落在线段BC(不含端点)上时,作AH⊥BC,垂足为H,作AG⊥EC,垂足为G,连接HG,判断△GHC的形状,并说明现由.【类型3已知两角对应相等,寻找夹边相等,用“ASA”】1.(2023春·黑龙江哈尔滨·七年级统考期末)如图,在△ABC中,BD平分∠ABC,AD⊥BD,若AB:BC=5:7,S△ADC=8,则S
2.(2023春·湖南永州·八年级校考期中)如图四边形ABCD中,∠AEB=∠CFD,∠BAE=∠DCF,AF=CE.求证:BE=DF.3.(2023春·江西宜春·七年级江西省丰城中学校考阶段练习)如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且∠CAD=45°.若BC=7,AD=5,求AF的长.4.(2023春·广东惠州·八年级校考阶段练习)如图,∠ABC=∠E,∠D=∠A,BE=CF,求证:△ABC≌
5.(2023春·云南文山·七年级统考期末)如图.已知线段AB,分别过线段AB的两个端点作射线AM、BN,使AM∥BN,点E为∠MAB平分线上的一点,且BE⊥AE,垂足为
(1)求∠EBN的度数;(2)过点E作直线CD,交AM于点D,交BN于点C.求证:DE=CE;(3)无论线段DC的两个端点在AM、BN上如何移动,只要线段DC经过点E,那么6.(2023春·陕西咸阳·七年级统考期末)【问题背景】如图,在Rt△ABC中,∠ACB=90°,∠ABC和∠BAC的平分线BE和AD相交于点G
【问题探究】(1)∠AGB的度数为°;(2)过G作GF⊥AD交BC的延长线于点F,交AC于点H,判断AB与FB的数量关系,并说明理由;(3)在(2)的条件下,若AD=10,FG=6,求【类型4已知一边一角对应相等,寻找另一角对应相等,用“AAS”或“ASA”】1.(2023春·四川德阳·八年级校考阶段练习)如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=A.①②③ B.②③④ C.①②④⑤ D.①②⑤2.(2023春·陕西西安·七年级校考阶段练习)如图,∠ABC=∠CAD=90°,AB=4,AC=AD,求△BAD的面积.
3.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板△ABC和△DBE按如图所示的方式摆放,连接DC.已知∠DBA=∠CBE,∠BDE=∠BAC,AC=DE=DC.
(1)试说明△ABC≌(2)若∠ACD=72°,求∠BED的度数.4.(2023春·陕西西安·七年级西安市第二十六中学校考阶段练习)如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E,AD与CE交于点F,且AD=CD.
(1)求证:△ABD≅△CFD;(2)若BC=9,AD=7,求AF的长.5.(2023春·湖南长沙·八年级长沙市开福区青竹湖湘一外国语学校校考期末)如图,∠ACB=90°,AC=BC,AD⊥CE,
(1)求证:△ACD≌(2)若AD=12,DE=7,求6.(2023春·七年级课时练习)(1)如图1,AB=AC,∠B=∠EDF,DE=DF(2)如图2,AB=AC,∠ABC=∠EDF,DE=DF(3)如图3,在中,∠B=∠ADE=45°,∠C=22.5°,【类型5已知一边一角对应相等,寻找夹该角的另一边对应相等,用“SAS”】1.(2023春·江苏·七年级统考期末)如图,在五边形ABCDE中,AB=AE=4,BC=3,DE=2,∠ABC=∠AED=90°,∠DAC=12∠BAE,则五边形ABCDE
A.16 B.20 C.24 D.262.(2023春·广东深圳·七年级统考期末)如图,长方形ABCD中,点E为AD上一点,连接CE,将长方形ABCD沿着直线CE折叠,点D恰好落在AB的中点F上,点G为CF的中点,点P为线段CE上的动点,连接PF、PG,若AE=a、ED=b、AF=c,则PF+PG的最小值是(
)
A.a+c-b B.b+2c C.a+b+2c D.a+b3.(2023春·山东泰安·七年级统考期末)如图,线段AB与CF交于点E,点D为CF上一点,连接AD、AF、BC,已知AD=BC,∠1=∠2.
(1)请添加一个条件________使△ADF≌△BCE,并说明理由.(2)在(1)的条件下请探究AE与BE的数量关系,并说明理由.4.(2023·江苏·八年级假期作业)已知:在△ABC中,AB=CD-BD,AD⊥BC,求证:∠B=2∠C.
5.(2023·江苏·八年级假期作业)如图,在△ABC中,AD为BC边上的中线.
(1)按要求作图:延长AD到点E,使DE=AD;连接BE.(2)求证:△ACD≌(3)求证:AB+AC>2AD.(4)若AB=5,AC=3,求AD的取值范围.6.(2023春·江西吉安·七年级统考期末)在△ABC中,BD、CE分别是∠ABC、∠ACB的将分线,BD与CE相交于点P.
(1)如图1,如果∠A=60°,∠A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年开发商与购房者长租公寓买卖合同范本3篇
- 二零二五年度餐饮服务业劳动合同模板及食品安全3篇
- 二零二五版特种动物繁育与购销一体化服务合同3篇
- 二零二五年教育机构教学资源整合合同书3篇
- 二零二五年空压机租赁与应急响应服务合同3篇
- 二零二五年教育培训机构代理招生合同模板3篇
- 二零二五版未成年人抚养权变更合同3篇
- 二零二五年度财务风险控制合同3篇
- 二零二五年度钢材采购与智能制造合作合同3篇
- 二零二五版豪华游轮包船旅游运输服务合同参考模板2篇
- 2024版个人私有房屋购买合同
- 2025年山东光明电力服务公司招聘笔试参考题库含答案解析
- 《神经发展障碍 儿童社交沟通障碍康复规范》
- 2025年中建六局二级子企业总经理岗位公开招聘高频重点提升(共500题)附带答案详解
- 2024年5月江苏省事业单位招聘考试【综合知识与能力素质】真题及答案解析(管理类和其他类)
- 3-9年级信息技术(人教版、清华版)教科书资源下载
- 玛氏销售常用术语中英对照
- (完整)猫咪上门喂养服务协议书
- 上海牛津版三年级英语3B期末试卷及答案(共5页)
- 行为疼痛量表BPS
- 小学生必背古诗词80首(硬笔书法田字格)
评论
0/150
提交评论