




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时平行四边形的判定(1)18.1.2平行四边形的判定八年级数学下册新课导入平行四边形有哪些性质?对边相等对角相等对角线互相平分学习目标学习重、难点1.知道平行四边形的四种判定方法及推理格式.2.能用这些判定方法证明一个四边形是平行四边形.
重点:平行四边形的判定的归纳与论证.
难点:平行四边形的判定的应用及规范表述.推进新课知识点1平行四边形的判定定理判定性质定义DABC问题如何寻找平行四边形的判定方法?直角三角形的性质直角三角形的判定勾股定理勾股定理的逆定理我们来回顾一下直角三角形的判定定理是怎么来的.逆向思考提出猜想两组对边分别相等的四边形是平行四边形平行四边形的性质猜想对边相等对角相等对角线互相平分两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形证明:连接BD.∵AB=CD,AD=BC,BD是公共边,∴△ABD≌△CDB.∴∠1=∠2,∠3=∠4.∴AB∥DC,AD∥BC.∴四边形ABCD是平行四边形.如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.两组对边分别相等的四边形是平行四边形.判定定理1DABC1234证明:∵多边形ABCD是四边形,∴∠A+∠B+∠C+∠D=360°.又∵∠A=∠C,∠B=∠D,∴∠A+∠B=180°,
∠B+∠C=180°.∴AD∥BC,AB∥DC.∴四边形ABCD是平行四边形.如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.两组对角分别相等的四边形是平行四边形.判定定理2DABC证明:∵OA=OC,OB=OD,∠AOD=∠COB,∴△AOD≌△COB.∴∠OAD=∠OCB.∴
AD∥BC.同理AB∥DC.∴四边形ABCD是平行四边形.如图,在四边形ABCD中,AC,BD相交于点O,且OA=OC,OB=OD.求证:四边形ABCD是平行四边形.对角线互相平分的四边形是平行四边形.判定定理3DABCO现在,我们一共有哪些判定平行四边形的方法呢?定义:两组对边分别平行的四边形叫做平行四边形.判定定理:
(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形.练习1.如图,AB=DC=EF,AD=BC,DE=CF.图中有哪些互相平行的线段?解:AB∥CD∥EF,AD∥BC,DE∥CF.
例3如图,
ABCD的对角线AC,BD相交于点O,E,F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO.
∵AE=CF,
∴AO-AE=CO-CF,即EO=FO.
又BO=DO,∴四边形BFDE是平行四边形.知识点2平行四边形判定定理的应用练习
1.如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.证明:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.∴AB∥DC.又∵DC=EF,DE=CF,∴四边形DCFE也是平行四边形.∴DC∥EF.∴AB∥EF.2.如图,ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点.求证:BE=DF.
证明:∵四边形ABCD是平行四边形,∴DO=OB,AO=OC,又E,F分别是OA,OC的中点,∴EO=FO,在△DOF与△BOE中,DO=BO,∠DOF=∠BOE,FO=EO,∴△DOF≌△BOE,∴BE=DF.随堂演练基础巩固
如图,△ABC平移后得到△DEF,则图中的平行四边形分别有____________________________.
ACFD、
ABED、
BCFE误区诊断误区一不能准确利用判定方法进行判定1.下列条件中,能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BCB.∠A=∠B,∠C=∠DC.AB=CD,AD=BCD.AB=AD,CB=CD错解:ABD正解:C错因分析:对平行四边形的判定方法没有理解,由一组对边平行且相等的四边形是平行四边形可知A是错误的;由两组对角分别相等的四边形是平行四边形可知B是错误的;选D的错误原因是没有实际作图观察,只是从表面上看有两组边相等,就认为是两组对边相等,所以D也是错误的.课堂小结两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.平行四边形的判定方法1.从课后习题中选取;2.完成练习册本课时的习题。课后作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗设备售后服务承诺及措施
- 华西厦门医院心理卫生中心招聘笔试真题2024
- 环境保护项目支持邀请函范文
- 秋季常见病预防措施大全
- 语言文字数字化转型计划
- 幼儿园日常健康监测与管理计划
- 艺术团体活动管理的综合措施
- 智能制造领域的施工工艺及技术措施
- 从觉醒年代看社会责任感心得体会
- 2025年教师团队合作与阅读计划
- 2022-2023学年北京市海淀区高二下学期期中练习数学试题【含答案】
- 标准-美国DS-160中文表格-1
- 设计成果确认单
- GA/T 1163-2014人类DNA荧光标记STR分型结果的分析及应用
- 骨转移瘤课件
- 护士注册健康体检表下载【可直接打印版本】
- 核心素养视角下教师专业发展课件
- 污水处理培训课件
- 初中语文八年级下册第三单元综合性学习古诗苑漫步-综合性学习《古诗苑漫步》教案
- 中国十大阶层的划分课件
- 高中英语各种教材词组汇总大全(超级实用)
评论
0/150
提交评论